School of Physics and Telecommunication Engineering/Senior 2021-02-04 15:55:58 From:School of Physics and Telecommunication Engineering Hits: Favorite
研究员(2016),博士生导师(2013),
Email:zyxue83 at 163.com; zyxue at scnu.edu.cn
个人主页:http://staff.scnu.edu.cn/zyxue
研究团队
博士后:刘佳,张程贤
博士生:陈涛;李赛,丁成赟;梁艳,冀丽娜;沈普
硕士生:2018级:谢文鑫,薛静;2019级:陈梅雅,贺郅程;
2020级:刘启沛,刘晓庆,谢旭丹,袁伟平;
本科生:2017级:官紫妍,吴奕璇;2018级黄子珊,梁铭杰,方明月;
2019级:林婷,刘昕鑫,李泽,谢扬
每年招收本科生2-3人;在理论物理和物理电子学专业招收硕博研究生3-4名,常年招聘博士后。
研究方向
从事量子信息科学领域的研究,主要方向为基于固态量子体系的几何量子计算和拓扑量子模拟,即利用量子光学中光与物理相互作用的一般理论,调控超导量子线路中的相互作用哈密顿量,应用于容错量子计算和拓扑量子模拟的研究。关于量子信息科学的更多介绍可参见“量子科学ABC”微信公众号的“精华合集”栏目。
我们研究注重理论和实验相结合,取得了一些有意义的研究成果。现正主持国家和省级科研项目各1项,已完成国家级项目2项,省级项目1项。2016年以来,第一/通讯作者论文Phys. Rev. Lett. 3篇,npj Quanutm Inf. 2篇,Phys. Rev. Appl. 7篇,Phys. Rev. A 8篇。
科研项目
[5] 2019-2022,主持,国家自然科学基金(面上):基于线路量子电动力学的容错量子计算研究。
[4] 2019-2023,主持,广东省重大专项(子课题):基于超导量子电路的专用量子计算机研究(南方科大)。
[3] 2013-2017,主持,科技部973项目(子课题):基于自旋量子调控的固态量子计算研究(中国科大)。
[2] 2011-2013,主持,国家自然科学基金(青年):几何与拓扑相位及其在容错量子计算中的应用。
[1] 2010-2012,主持,广东省自然科学基金项目(博士启动):拓扑量子计算及其在固态系统中的物理实现。
近期科研论文(#共同第一作者,*通讯作者)
Preprint
[6] Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum Gates with Two Dark Paths in a Trapped
Ion, M.-Z. Ai#, S. Li#, R. He, Z.-Y. Xue*, J.-M. Cui*, Y.-F. Huang*, C.-F. Li*, and G.-C. Guo, arXiv:2101.07483.
[5] Holonomic protected charge qubits coupled via a superconducting resonator,
C. Zhang, G. X. Chan, X. Wang*, and Z.-Y. Xue*, arXiv:2012.14129.
[4] Dynamically Corrected Nonadiabatic Holonomic Quantum Gates,
S. Li and Z.-Y. Xue*, arXiv:2012.09034.
[3] Interaction induced non-reciprocal many-body quantum transport,
S. Li, T. Chen, J. Liu*, and Z.-Y. Xue*, arXiv:2004.05826.
[2] Microwave driven geometric quantum computation on semiconductor charge qubits,
C. Zhang, T. Chen, X. Wang*, and Z.-Y. Xue*, arXiv:2004.0021.
[1] Brachistochronic Non-Adiabatic Holonomic Quantum Control,
B.-J. Liu, Z.-Y. Xue*, and M.-H. Yung*, arXiv:2001.05182;南大超导体系实验验证[arXiv:2004.10364]。
[1] Faithful Simulation and Detection of Quantum Spin Hall Effect on Superconducting Circuits,
J. Liu, J.-Y. Cao, G. Chen*, and Z.-Y. Xue*, Quantum Engineering, (2021); arXiv:1909.03674.
[10] Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit,
Y. Xu#, Z. Hua#, T. Chen#, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z.-Y. Xue*, and L. Sun*,
Phys. Rev. Lett. 124, 230503 (2020).
[9] High-fidelity and robust geometric quantum gates that outperform dynamical ones,
T. Chen and Z.-Y. Xue*, Phys. Rev. Appl. 14, 064009 (2020).
[8] Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum Gates with Optimal Control in a Trapped Ion,
M.-Z. Ai, S. Li, Z. Hou, R. He, Z.-H. Qian, Z.-Y. Xue*, J.-M. Cui*, Y.-F. Huang*, C.-F. Li*, and G.-C. Guo,
Phys. Rev. Appl. 14, 054062 (2020).
[7] Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting Circuits,
T. Chen, P. Shen, and Z.-Y. Xue*, Phys. Rev. Appl. 14, 034038 (2020).
[6] Synthetic gauge field and chiral physics on two-leg superconducting circuits,
X. Guan*, Y. Feng, Z.-Y. Xue*, G. Chen*, and S. Jia, Phys. Rev. A 102, 032610 (2020).
[5] Fast geometric quantum computation with optimal control on superconducting circuits,
J. Xu#, S. Li#, T. Chen, and Z.-Y. Xue*, Front. Phys. (Beijing) 15, 41503 (2020). [封面论文]
[4] High-fidelity geometric gate for silicon-based spin qubits,
C. Zhang, T. Chen, S. Li, X. Wang*, and Z.-Y. Xue*, Phys. Rev. A 101, 052302 (2020).
[3] Detecting non-Abelian statistics of topological states on a chain of superconducting circuits,
J.-Y. Cao, J. Liu*, L. B. Shao*, and Z.-Y. Xue*, Phys. Rev. A 101, 022313 (2020).
[2] Fast holonomic quantum computation on superconducting circuits with optimal control,
S. Li, T. Chen, and Z.-Y. Xue*, Adv. Quantum Technol. 3, 2000001 (2020);
中科大离子阱[PRApplied 14, 054062 (2020)]和NV色心体系实验验证。
[1] Quantum Secure Multiparty Computation with Symmetric Boolean Functions,
H. Cao, W. Ma*, G. Liu, L. Lv, and Z.-Y. Xue*, Chin. Phys. Lett. 37, 050303 (2020).
[6] Plug-and-Play Approach to Nonadiabatic Geometric Quantum Gates,
B.-J. Liu, X.-K. Song, Z.-Y. Xue*, X. Wang*, and M.-H. Yung*, Phys. Rev. Lett. 123, 100501 (2019);
综述论文[RMP 91, 045001 (2019)]的重点引用与正面评论;南科大超导体系实验验证[PRL 122,080501 (2019)]。
[5] Synthetic spin-orbit coupling and topological polaritons in Janeys-Cummings lattices,
F.-L. Gu, J. Liu, F. Mei*, S. Jia, D.-W. Zhang, and Z.-Y. Xue*, npj Quantum Inf. 5, 36 (2019).
[4] Single-Loop and Composite-Loop Realization of Nonadiabatic Holonomic Quantum Gates in a Decoherence-Free Subspace, Z. Zhu#, T. Chen#, X. Yang, J. Bian, Z.-Y. Xue*, and X. Peng*, Phys. Rev. Appl. 12, 024024 (2019).
[3] Scalable nonadiabatic holonomic quantum computation on a superconducting qubit lattice,
L.-N. Ji#, T. Chen#, and Z.-Y. Xue*, Phys. Rev. A 100, 062312 (2019).
[2] Single-step multipartite entangled states generation from coupled circuit cavities,
X.-T. Mo and Z.-Y. Xue*, Front. Phys. (Beijing) 14, 31602 (2019).
[1] Fast hybrid quantum state transfer and entanglement generation via no transition passage,
J. Zhou*, S. Li, T. Chen, and Z.-Y. Xue*, Ann. Phys. (Berlin) 531, 1800402 (2019).
[6] Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit,
Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z.-Y. Xue*, Z.-Q. Yin*, and L. Sun*,
Phys. Rev. Lett. 121, 110501 (2018).
[5] Nonadiabatic Geometric Quantum Computation with Parametrically Tunable Coupling,
T. Chen and Z.-Y. Xue*, Phys. Rev. Appl. 10, 054051 (2018);清华超导实验验证[PRL 124, 230503 (2020)].
[4] Perfect Quantum State Transfer in a Superconducting Qubit Chain with Parametrically Tunable Couplings,
X. Li#, Y. Ma#, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z.-Y. Xue*, Z.-Q. Yin*, and L. Sun*,
Phys. Rev. Appl. 10, 054009 (2018).
[3] Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries,
T. Chen, J. Zhang, and Z.-Y. Xue*, Phys. Rev. A 98, 052314 (2018).
[2] Implementing universal nonadiabatic holonomic quantum gates with transmons,
Z.-P. Hong#, B.-J. Liu#, J.-Q. Cai#, X.-D. Zhang*, Y. Hu, Z. D. Wang, and Z.-Y. Xue*, Phys. Rev. A 97, 022332 (2018),
清华超导体系实验验证[PRL 121, 110501 (2018)]和日本实NV色心体系实验验证[OL 43, 2380 (2018)]。
[1] Fast holonomic quantum computation based on solid-state spins with all-optical control,
J. Zhou, B.-J. Liu, Z.-P. Hong, and Z.-Y. Xue*, Sci. China-Phys. Mech. Astron. 61, 010312 (2018).
毕业生
博士:
[3] 2022:李赛
(5) S. Li and Z.-Y. Xue*, arXiv:2012.09034.
(4) S. Li, T. Chen, J. Liu*, and Z.-Y. Xue*, arXiv:2004.05826.
(3) M.-Z. Ai, S. Li, et al., Phys. Rev. Appl. 14, 054062 (2020).
(2) J. Xu#, S. Li#, T. Chen, and Z.-Y. Xue*, Front. Phys. (Beijing) 15, 41503 (2020). [封面论文]
(1) S. Li, T. Chen, and Z.-Y. Xue*, Adv. Quantum Technol. 3, 2000001 (2020).
[2] 2021:陈涛,获研究生国家奖学金(2019,2020);
(7) T. Chen and Z.-Y. Xue*, Phys. Rev. Appl. 14, 064009 (2020).
(6) T. Chen, P. Shen, and Z.-Y. Xue*, Phys. Rev. Appl. 14, 034038 (2020).
(5) Y. Xu#, Z. Hua#, T. Chen#, et al., Phys. Rev. Lett. 124, 230503 (2020).
(4) L.-N. Ji#, T. Chen#, and Z.-Y. Xue*, Phys. Rev. A 100, 062312 (2019).
(3) Z. Zhu#, T. Chen#, et al., Phys. Rev. Appl. 12, 024024 (2019).
(2) T. Chen and Z.-Y. Xue*, Phys. Rev. Appl. 10, 054051 (2018)
(1) T. Chen, J. Zhang, and Z.-Y. Xue*, Phys. Rev. A 98, 052314 (2018).
[1] 2014:周建(联合指导);毕业去向:安徽新华学院,教授(2017);皖西学院教授(2020)。
硕士:
[13] 2020: 曹俊义,毕业去向:中学教师,中山;
[12] 2020: 徐靖,毕业去向:企业,上海;
[11] 2019: 莫小涛,毕业去向:中学教师,广州;
[10] 2018: 顾风磊;毕业去向:香港城市大学(读博);
[09] 2018: 洪卓平;毕业去向:中学教师,深圳;
[08] 2018: 周 笑;毕业去向:中学教师,深圳;
[07] 2016:李亚飞;毕业去向:中学教师,广州;
[06] 2016:杨丽娜;毕业去向:中学教师,珠海;
[05] 2015:余卫灿;毕业去向:中学教师,珠海;
[04] 2014:吴晓佳;毕业去向:中学教师,珠海;
[03] 2014:彭漫率;毕业去向:中学教师,广州;获研究生国家奖学金
[02] 2013:刘 胜;毕业去向:南京大学(读博);岭南师范学院(2019)
[01] 2011:邹卫平(联合指导);毕业去向:中学教师,珠海;
本科:
[15] 2021:吴亦璇,毕业去向:本校保研
[14] 2021:官紫妍,毕业去向:保研(华南理工大学)
[13] 2020:雷嘉锐;毕业去向:保研(浙江大学)
[12] 2017:刘泽刚;毕业去向:保研(中国科技大学)
[11] 2017:曹俊义;毕业去向:本校读研
[10] 2016:陈燕芝;毕业去向:保研(华南理工大学)
[09] 2015:麦雪莹;毕业去向:本校读研
[08] 2014:谭志凌;毕业去向:
[07] 2013:李亚飞;毕业去向:本校读研
[06] 2012:余卫灿;毕业去向:本校保研
[05] 2012:吴韵清;毕业去向:
[04] 2011:吴晓佳;毕业去向:本校保研
[03] 2011:彭漫率;毕业去向:本校保研
[02] 2011:张燕茵;毕业去向:本校保研
[01] 2011:凌倩怡:优秀毕业论文;毕业去向: