School of Physics and Telecommunication Engineering/Senior 2021-02-04 16:36:00 From:School of Physics and Telecommunication Engineering Hits: Favorite
基本情况
邵志刚, 男, 物理学科基础课实验教学示范中心
凝聚态物理专业,博士, 教授, 博导
通讯地址: 华南师范大学物理与电信工程学院 理六栋311室 邮编:510006
研究方向
学硕:
1) 纳米材料性质理论计算 (需要基础:编程、固体物理、普通物理)
如纳米材料第一性原理计算,非平衡热输运:微观热输运、热不对称和热器件等。
通过MD研究热输运。微观热输运是最近热流控制前沿研究热点之一,备受科学家关注。其中负微分热阻现象是在研究热不对称输运现象时候发现的一种新颖的微观热输运现象;在这一现象的基础上面,各种微观的热器件理论模型(如热三极管、热逻辑门和记忆器等)被提出。类比微观的电输运现象,微观热输运现象有重要和广泛的应用前景。拟通过分子动力学模拟以及相应的理论分析方法研究各种低维体系中微观热输运。
通过Materials studio等第一性原理计算二维材料如石墨烯的一些物理性质研究(如电,光,力,热,电磁等)。非平衡格林函数计算电子输运性质。
在宏观材料性质方面,利用Comsol Multiphysics开展一些超材料(隐身材料)的性质计算。
(除自己写程序外,主要用到和参考相关软件有:MS,VASP,ATK,ANSYS,Comsol Multiphysics, lammps, phonopy,WIEN2K,SIESTA,CPMD,ABINIT,quantum-espresso, DL_POLY)
2)时间序列数据挖掘 (需要基础:编程、数理统计)
简介:通过传统的时间序列分析方法如傅里叶分析,小波分析,DFA、MF-DFA分析和复杂网络分析方法研究一些生理信号中的统计规律,以期望能统计描述这些信号,在此基础上分析和诊断生理疾病。(数据来源:PhysioNet)
在上面的内容扩展,把各种非线性时间序列分析方法(傅里叶变换,小波分析,相空间重构,MF-DFA(各种变种),Hurst指数,几率密度分析,复杂网络分析方法等)应用到不同领域的时间序列分析研究,如气候数据等。最近,也将深度学习方法应用于相关数据分析研究。
3)统计物理 (需要基础:编程、数理统计、非线性物理)
集体运动(collective motion)模拟,粒子输运与扩散,复杂网络,分形,混沌,同步等。
电子与信息工程专硕:
利用机器学习(pytorch框架)来进行心理生理计算与情感智能研究。
需要学习python,pytorch。
招生信息
长期招博士后,青年英才;每年招凝聚态物理、材料科学与工程等学术型硕士生1-2名;电子与信息工程专业型硕士生1名
欢迎英语、计算编程能力好的本科生联系进行大学生科研。
教育经历
本科: 1997-2001 武汉大学物理科学与技术学院,材料物理
博士: 2001-2006 武汉大学物理科学与技术学院,凝聚态物理 硕博连读(导师:邹宪武教授)
工作经历:
2006.9-2009.12 香港浸会大学非线性研究中心,博士后研究工作,合作导师:胡斑比教授
2010.1 -至今 华南师范大学物理与电信工程学院
2014.5.6— 2015.5.24 美国普渡大学 物理系 访问学者 合作导师:Yong P. Chen
承担课程
本科生课程:固体物理、理论力学、大学物理、电磁学、大学物理实验,计算材料学,计算物理基础
研究生课程:生物物理导论、物理前沿讲座、非平衡量子输运、数值计算、物理前沿进展、第一性原理,材料物理理论计算方法、材料科学前沿动态与专业学术报告
主要项目与成果
个人荣誉, 2014年, 广东省高等学校“千百十人才培养工程” 第八批校级培养对象
科研项目, 2020年, 国家自然科学面上基金:新型平面狄拉克碳材料的物理性质及气体吸附的理论研究
科研项目, 2018年, 广东省自然科学基金:基于非线性时间序列分析的冰芯多时间尺度统计特征研究
科研项目, 2012年, 国家自然科学青年基金:低维晶格体系中负微分热阻现象的研究
科研项目, 2010年, 广东高校优秀青年创新人才培育项目:低维材料中负微分热阻现象的研究
指导学生情况与学生成果
竞赛, 本科生, 2019年, 广东省第二十届大学生物理实验设计大赛一等奖
竞赛, 本科生, 2013年, 广东省第十四届大学生物理实验设计大赛二等奖
本科生,2019年,优秀本科毕业论文(2人)
科研, 本科生, 2019年, 校级大学生创新创业训练
科研, 硕士生, 2020年, 优秀毕业生
科研, 硕士生, 2014年, 国家奖学金
主要论文:
A:纳米材料性质计算
19)Bai Li, Zhi-Gang Shao (corresponding author), Adsorption of DNA/RNA Nucleobases and Base Pairs on Penta-Graphene from First Principles. Applied Surface Science 512,145635 (2020).
18) Xue-Fang Qin, Zhi-Gang Shao (corresponding author), Cang-Long Wang, Lei Yang, Electronic and optical properties of lithium-decorated δ-graphyne from first principles. Optik 216, 164898 (2020).
17) Wen-Ming Luo, Z.-G. Shao(corresponding author), Xue-Fang Qin, and Mou Yang, Photogalvanic effect in monolayer WSe2-MoS2 lateral heterojunction from first principles, Physica E 115, 113714 (2020).
16)Wen-Ming Luo, Zhi-Gang Shao (corresponding author) and Mou Yang, Photogalvanic Effect in Nitrogen-Doped Monolayer MoS2 from First Principles. Nanoscale Res Lett 14, 380 (2019) doi:10.1186/s11671-019-3222-5
15) Hui-Peng Su, Xue-Fang Qin and Zhi-Gang Shao (corresponding author), Electronic transport properties of boron and nitrogen pair co-doped 6,6,12-graphyne nanosheet from first principles, Phys. Scr. 94 (2019) 075801.
14)邵志刚(通讯作者),李白, 新型二维碳材料net-Y光学性质第一性原理研究 A First Principle Study on Optical Properties of a Novel Two-Dimensional Carbon Material Net-Y. J. South Chin. Norm. Univ. (Nat. Sci. Ed.) 51,(6), 6-11. (2019)
13) 罗文铭, 邵志刚(通讯作者), 杨 谋, 单层含硫空位MoS2光伏效应的第一性原理研究 A first principle study of the photogalvanic effect of monolayer MoS2 with sulfur vacancies, J. South Chin. Norm. Univ. (Nat. Sci. Ed.) 51,(4), 7-13. (2019)
12)Can-Peng Zhang, Bai Li, Zhi-Gang Shao (corresponding author), First-principle investigation of CO and CO2 adsorption on Fe-doped penta-graphene, Applied Surface Science 469,641-646 (2019)
11)张灿鹏 邵志刚 (corresponding author), CO2和CO分子在五边形石墨烯表面的吸附行为The adsorption behavior of CO2 and CO on penta-graphene, J. South Chin. Norm. Univ. (Nat. Sci. Ed.) 51,(1), 11-15. (2019)
10)Z.-L. Sun, Z.-G. Shao (corresponding author), C.-L. Wang, and L.Yang (corresponding author), Electronic and optical properties of boron and nitrogen pair co-doped 6,6,12-graphyne nanosheet, Carbon 110, 313-320 (2016) Dec.
9) Z.-G. Shao and Z.-L. Sun, Optical properties of α-, β-, γ-, and 6,6,12-graphyne structures: first-principle calculations, Physica E 74, 438-442 (2015).
8) Z.-G. Shao, B.-q. Ai, and W.-R. Zhong, The effect of defects on negative differential thermal resistance in symmetric graphene nanoribbons, Appl. Phys. Lett. 104, 013106 (2014).
7) X.-S. Ye, Z.-G. Shao (corresponding author), H. Zhao, L.Yang, and C.-L. Wang, Electronic and optical properties of silicene nanomeshes, RSC Advances, 4 (72), 37998 – 38003 (2014).
6) X.-S. Ye, Z.-G. Shao (corresponding author), H. Zhao, L.Yang, and C.-L. Wang, Intrinsic carrier mobility of germanene is larger than graphene’s: first-principle calculations, RSC Advances, 4, 21216–21220 (2014).
5) Z.-G. Shao, X.-S. Ye, L.Yang, and C.-L. Wang, First-principles calculation of intrinsic carrier mobility of silicene, J. Appl. Phys. 114, 093712 (2013).
4) Z.-G. Shao and L. Yang, Relationship between negative differential thermal resistance and ballistic transport, EPL 94, 34004 (2011).
3) Zhi-Gang Shao, Lei Yang, Ho-Kei Chan,and Bambi Hu, Transition from exhibition to nonexhibition of negative differential thermal resistance in the two-segment Frenkel-Kontorova model, Phys. Rev. E 79,061119 (2009).
2) Zhi-Gang Shao, Lei Yang, Wei-Rong Zhong, Da-Hai He, and Bambi Hu, Scaling and the thermal conductivity of the Frenkel-Kontorova model, Phys. Rev. E 78,061130 (2008).
1)Wei -Rong Zhong, Ping Yang, Bao-quan Ai, Zhi-Gang Shao, and Bambi Hu, Negative differential thermal resistance induced by ballistic transport, Phys. Rev. E 79 050103(R) (2009).
B:时间序列数据挖掘
6). Jin Li, Zhi-Gang Shao (corresponding author), Leverage effects of financial markets in financial crisis. International Journal of Modern Physics C 31(5), 2050072 (2020).
5). Z.-G. Shao, Contrasting the complexity of the climate of the past 122,000 years and recent 2000 years, Scientific Reports 7, 4143 (2017) July.
4). Z.-G. Shao & P. D. Ditlevsen. Contrasting scaling properties of interglacial and glacial climates. Nature communications 7:10951 doi: 10.1038/ncomms10951 (2016)
3). Z.-G. Shao, H.-H. Wang, Multifractal Detrended Fluctuation Analysis of the δ18O record of NGRIP ice core, Climate Dynamics 43(7-8), 2105-2109 (2014) 10月.
2). Z.-G. Shao, B.-q. Ai, L. Yang, and B. Ao, Complex networks from colored Gaussian noise, J. Phys. Soc. Jpn. 80, 074001 (2011). 6月
1). Z.-G. Shao, Network analysis of human heartbeat dynamics, Appl. Phys. Lett. 96, 073703 (2010).
C: 统计物理
16. Bao-quan Ai, Zhi-gang Shao, Wei-rong Zhong. Mixing and demixing of binary mixtures of polar chiral active particles. Soft matter 14 (21), 4388-4395 (2018).
15.Yi Yang(杨毅), Qi Gu(辜琦), Ben-Gong Zhang(张本龚), Ya-Zhou Shi(时亚洲) (corresponding author), & Zhi-Gang Shao(邵志刚) (corresponding author). A novel knowledge-based potential for RNA 3d structure evaluation. Chinese Physics B, 27(3) 038701 (2018). March
14. 江智亮, 陈沛荣, 钟伟荣, 艾保全, 邵志刚. 非对称双原子分子在输运扩散中的取向效应 Orientation effect of asymmetric diatomic molecules in transport diffusion 物理学报., 67 (22): 226601 (2018).
13. Z.-G. Shao and Yan-Yan Yang, Effective strategies of collective evacuation from an enclosed space, Physica A 427, 34-39 (2015). June
12. Z.-G. Shao, T. Chen, and B.-q. Ai, Growing Networks with Temporal Effect and Mixed Attachment Mechanisms, Physica A, 413, 147-152 (2014.11) July.
11. T. Chen and Z.-G. Shao (corresponding author), Power-law accelerating growth complex networks with mixed attachment mechanisms, Physica A, 391, 2778 (2012). 4月
10. Z.-G. Shao, X.-W. Zou, Z.-J. Tan, and Z.-Z. Jin, Growing networks with mixed attachment mechanism, J. Phys. A: Math. Gen. 39 2035-2042 (2006).
9. Z.-G. Shao, Z.-J. Tan, X.-W. Zou, and Z.-Z. Jin, Epidemics with pathogen mutation on small-world networks, Physica A 363, No.2 , 561-566 (2006).
8. Z.-G. Shao, J.-P. Sang, X.-W. Zou, Z.-J. Tan, and Z.-Z. Jin, Blackmail propagation on small-world networks, Physica A 351, No.2-4 , 662-670 (2005).
7. Z.-G. Shao, J.-P. Sang, X.-W. Zou, Z.-J. Tan, and Z.-Z. Jin, Efficiency dynamics on scale-free networks with tunable degree exponent, Eur. Phys. J. B 48,No.4,p587 (2005).
6. Z.-G. Shao, X.-W. Zou, Z.-J. Tan, S.-Y. Huang, and Z.-Z. Jin, Deposition, diffusion, and aggregation on small-world networks: A model for nanostructure on the defection substrate, Phys, Lett. A 331(1-2) 105-109 (2004).
5. C.-L. Wang, J. Tekic,W.-S. Duan, Z.-G. Shao, and L. Yang, Ratchet effect and amplitude dependence of phase locking in a two-dimensional Frenkel-Kontorova model, J. Chem. Phys. 138, 034307 (2013). 1月
4. Bao-quan Ai, Zhi-gang Shao, and Wei-rong Zhong, Rectified Brownian transport in corrugated channels: Fractional Brownian motion and Lévy flights, J. Chem. Phys. 137, 174101 (2012). 11月
3. C.-L. Wang, J. Tekic,W.-S. Duan, Z.-G. Shao, and L. Yang,Existence and stability of the resonant phenomena in the dc- and ac-driven overdamped Frenkel-Kontorova model with the incommensurate structure,Phys. Rev. E 84, 046603 (2011). 10月
2. S.-Y. Huang, X.-W. Zou, Z.-G. Shao, Z.-J. Tan, and Z.-Z. Jin, Particle-cluster aggregation on a small-world network, Phys. Rev. E 69(6), 067104/1-4 (2004).
1. S.-Y. Huang, X.-W. Zou, Z.-J. Tan,Z.-G. Shao, and Z.-Z. Jin, Critical behavior of efficiency dynamics in small-world networks, Phys. Rev. E 68(1), 016107/1-5 (2003).