Ru Qiang

汝强,博士,副教授ruqiang@scnu.edu.cn

1、学术学位硕士招生专业:微电子学与固体电子学

2、专业学位硕士招生专业:电子信息、光学工程

1自我介绍

华南师范大学物理与电信工程学院副教授、博士,微电子学与固体电子学专业硕士导师,国家留学基金委公派资助美国休斯敦大学访问学者。

2研究方向与平台

1目前主要从事纳米功能材料在新型绿色储能材料中的应用(锂离子电池、钠离子电池、钾离子电池、锌离子电池、镁离子电池、超级电容器等)、材料的分子设计与合成等方面的研究,承担、参与了国家自然科学基金、广东省自然科学基金、广东省科技计划项目、广东省教育部产学研合作项目、广东高校优秀青年创新人才培育项目等多项课题。

2实验室依托广东省高效绿色能源与环保材料工程技术研究中心,该中心具有良好的软件、硬件测试平台。

3、毕业生情况

学生就业率良好,多分布在珠三角、长三角核心城市。多人攻读博士学位,并继续博士后深造

4、主持/参与科技项目

[1] 国家自然科学基金:SnSbMe/MCMB异相-结构体系的设计与嵌锂效应研究(51101062

[2] 国家留学基金委公派项目:美国休斯敦大学访问学者,留金法[2013]5045

[3] 广东省自然科学基金:锂离子电池高容量嵌层结构钴酸锌/石墨烯复合体系的设计与储锂性能研究(2014A030313436

[4] 广州市科技计划项目:高容量异相核壳结构纳米锡锑基锂离子负极材料的分子设计与性能研究(2011J4100075)

[5] 广州市科技计划项目:新型高容量钠离子电池负极材料“Black P/SnMe/C”纳米多元复合体系的设计与协同储能效应研究(201607010274

[6] 国家自然科学基金面上项目:新型核壳结构纳米硅基负极材料的分子设计及性能研究(51171065

[7] 广东省自然科学基金重点项目:锂离子电池硅碳复合负极材料的设计及其应用研究(S2012020010937

[8] 国家自然科学基金委员会-广东省人民政府联合基金(重点支持项目) :高能量密度水溶液可充锂/锌电池的研究

[9] 广东省科技计划项目:面向石墨烯/硅基负极材料的高能诱导原位生长技术及其应用(2017A040405047

[10] 广东省自然科学基金面上项目:高性能水系Zn离子电池钒基正极材料的结构稳定化设计、性能优化与储锌机理研究(2019A1515011615

[11] ......持续更新中

5、发表SCI论文60余篇

[1] Su Chiquan, Ru Qiang*, et al. Biowaste-sustained MoSe2 composite as an efficient anode for sodium/potassium storage applications, Journal of Alloys and Compounds, 2021, 850.

[2] Cheng Shikun, Ru Qiang*, et al. Anionic defect-enriched ZnMn2O4 nanorods with boosting pseudocapacitance for high-efficient and durable Li/Na storage. Chemical Engineering Journal. 2021, 406.

[3] Yan Honglin, Ru Qiang*, et al. Organic pillars pre-intercalated V4+-V2O5·3H2O nanocomposites with enlarged interlayer and mixed valence for aqueous Zn-ion storage. Applied Surface Science. 2020, 534.

[4] Yan Honglin, Ru Qiang*, et al. Scalable in situ condensation fabrication of amorphous SiOX@C microbeads derived from organic silane coupling agents for lithium-ion storage. Ionics. 2020, 26:649-60.

[5] Liu Yang, Ru Qiang*, et al. Constructing volcanic-like mesoporous hard carbon with fast electrochemical kinetics for potassium-ion batteries and hybrid capacitors Check updates, Applied Surface Science, 2020, 525.

[6] Gao Ping, Ru Qiang*, et al.  A Durable Na0.56V2O5 Nanobelt Cathode Material Assisted by Hybrid Cationic Electrolyte for High-Performance Aqueous Zinc-Ion Batteries, Chemelectrochem, 2020, 7: 283-288.

[7] Shi Zhenglu, Ru Qiang*, et al.  Hierarchically Rambutan-Like Zn3V3O8 Hollow Spheres as Anodes for Lithium-/Potassium-Ion Batteries, Energy Technology,2020, 8.

[8] Su Chiquan, Ru Qiang*, et al. 3D pollen-scaffolded NiSe composite encapsulated by MOF-derived carbon shell as a high-low temperature anode for Na-ion storage, Composites Part B, 2019, 179, 107538.

[9] Zhang Peng, Gao Yuqing, Ru Qiang*, et al. Scalable preparation of porous nano-silicon/TiN@carbon anode for lithium-ion batteries, Applied Surface Science, 2019, 498: 143829.

[10] Zhang Peng, Ru Qiang*, et al. Porous nano-silicon/TiO2/rGO@carbon architecture with 1000-cycling lifespan as superior durable anodes for lithium-ion batteries, Ionics, 2019, 25(10): 4675-4684.

[11] Yan Honlin, Ru Qiang*, et al. Lamellar V5O12·6H2O Nanobelts Coupled with Inert Zn(OH)2·0.5H2O as Cathode for Aqueous Zn2+/Nonaqueous Na+ Storage Applications, Energy Technology, 2019, 8(3): 1901105.

[12] Cheng Shikun, Ru Qiang*, et al. Micro-emulsion strategy used to prepare soybean oil-tailored 1D porous ZnCo2O4 cuboid morphology providing a durable performance of the anodes of lithium ion batteries, Journal of Alloys and Compounds, 2019, 809: 151703.

[13] Liu Peng, Ru Qiang*, et al. One-step synthesis of Zn2GeO4/CNT-O hybrid with superior cycle stability for supercapacitor electrodes, Chemical Engineering Journal, 2019, 374: 29-38.

[14] Cheng Shikun, Ru Qiang*, et al. Plant Oil-Inspired 3D Flower-Like Zn3V3O8 Nanospheres Coupled with N-Doped Carbon as Anode Material for Li-/Na-Ion Batteries, Energy Technology, 2019, 7(11):1900754.

[15] Gao Yuqing, Ru Qiang*, et al. Mosaic Red Phosphorus/MoS2 Hybrid as an Anode to Boost Potassium-Ion Storage, ChemElectroChem, 2019, 6(17): 4689-4695.

[16] Zhang Peng, Ru Qiang*, et al. Hierarchically 3D structured milled lamellar MoS2/nano-silicon@carbon hybrid with medium capacity and long cycling sustainability as anodes for lithium-ion batteries, Journal of Materials Science & Technology, 2019, 35(9): 1840-1850.

[17] Liu Yang, Ru Qiang*, et al. Synthesis and Electrochemical Research of Milled Antimony and Red Phosphorus Hybrid Inlaid with Graphene Sheets as Anodes for Lithium-Sodium Storage, Energy Technology, 2019, 7(6): 1801022.

[18] Liu Peng, Ru Qiang*, et al. Harnessing the synergic lithium storage and morphology evolution of 1D bundle-like NiCo2O4@TiO2 hybrid to prolong the cycling life for lithium ion batteries, Chemical Engineering Journal, 2018, 350: 902-910.

[19] Ru Qiang*, Wang Zhen, et al. Self Assembled Rice Ball-Like ZnCo2O4 Inlaid on rGO as Flexible Anodes with High Lithium Storage Capability and Superior Cycling Stability, Energy Technology, 2018, 6(10): 1899-1903.

[20] Guo Qing, Ru Qiang*, et al. One-Step Fabrication of Carbon Nanotubes-Decorated Sn4P3 as a 3D Porous Intertwined Scaffold for Lithium-Ion Batteries, ChemElectroChem, 2018, 5(15): 2150-2156.

[21] Wang Bei, Ru Qiang*, et al. Ni12P5 Nanoparticles Hinged by Carbon Nanotubes as 3D Mesoporous Anodes for Lithium-Ion Batteries, ChemElectroChem, 2018, 5(11): 1467-1473.

[22] Guo Qing, Ru, Qiang*, et al. The electrochemical confrontation between CoP microflake and Co3O4 microsphere via a similar synthesis process as anodes for lithium ion batteries, Journal of Alloys and Compounds, 2017, 728: 910-916.

[23] Guo Qing, Ru Qiang*, et al. Design and Synthesis of Mesoporous Honeycomb‐Like CoP/Co2P Hybrids as Anode with a High Cyclic Stability in Lithium‐Ion Batteries, Energy Technology, 2017, 5(12): 2294-2299.

[24] Ru Qiang, Zhao doudou, et al. Three-dimensional rose-like ZnCo2O4 as a binder-free anode for sodium ion batteries, Journal of Materials Science: Materials in Electronics, 2017, 28(20): 15451–15456.

[25] Wang Zhen, Ru Qiang*, et al. Solvothermal Fabrication of Hollow Nanobarrel-Like ZnCo2O4 Towards Enhancing the Electrochemical Performance of Rechargeable Lithium-Ion Batteries, ChemElectroChem, 2017, 4(9): 2218-2224.

[26] Wang Bei, Ru Qiang*, et al. Fabrication of One-Dimensional Mesoporous CoP Nanorods as Anode Materials for Lithium-Ion Batteries, European Journal of Inorganic Chemistry, 2017, 31: 3729-3735.

[27] Ru Qiang, Chen Xiaoqiu, et al. Biological carbon skeleton of lotus-pollen surrounded by rod-like Sb2S3 as anode material in lithium ion battery, Materials Letters, 2017, 198: 57–60.

[28] Chen Xiaoqiu, Ru Qiang*, et al. Ternary Sn-Sb-Co alloy particles embedded in reduced graphene oxide as lithium ion battery anodes, Materials Letters, 2017, 191: 218–221.

[29] Wang Zhen, Ru Qiang*, et al. Facile synthesis of porous peanut-like ZnCo2O4 decorated with rGO/CNTs toward high-performance lithium ion batteries, Journal of Materials Science: Materials in Electronics, 2017, 28(12): 9081–9090.

[30] Zhao Doudou, Ru Qiang*, et al. Design and synthesis of a novel 3D hierarchical mesocarbon microbead as anodes for lithium ion batteries and sodium ion batteries, Ionics, 2017, 23(4): 897–905.

[31] Mo Yudi, Ru Qiang*, et al. The sucrose-assisted NiCo2O4@C composites with enhanced lithium storage properties, Carbon, 2016, 109: 616-623.

[32] Chen Chang, Liu Borui, Ru Qiang*, et al. Fabrication of cubic spinel MnCo2O4 nanoparticles embedded in graphene sheets with their improved lithium-ion and sodium-ion storage properties, Journal of Power Sources, 2016, 326: 252-263.

[33] Chen Junfen, Ru Qiang*, et al. Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries, Physical Chemistry Chemical Physics, 2016, 18: 18949-18957.  

[34] Ru Qiang*, Chen Xiaoqiu, et al. The lamella SnSbCux/MCMB/carbon composite as high stability and durable anodes for lithium ion battery, Electrochimica Acta, 2016, 193: 180-190.

[35] Ru Qiang*, Song Xiong, et al. Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances, Journal of Alloys and Compounds, 2016, 654: 586-592.

[36]  Mo Yudi, Ru Qiang*, et al. The design and synthesis of porous NiCo2O4 ellipsoids supported by flexile carbon nanotubes with enhanced lithium-storage properties for lithium-ion batteries, RSC Advances, 2016, 6: 31925–31933.

[37] Chen Chang, Liu Borui, Ru Qiang*, et al. Chemically integrated hierarchical hybrid zinc cobaltate/reduced graphene oxide microspheres as an enhanced lithium-ion battery anode, RSC Advances, 2016, 6: 4914-4924.

[38] Chen Xiaoqiu, Ru Qiang*, et al. Flake structured SnSbCo/MCMB/C composite as high performance anodes for lithium ion battery, Journal of Alloys and Compounds, 2015,646: 794-802.

[39] Mo Yudi, Ru Qiang*, et al. Three-dimensional NiCo2O4 nanowire arrays: preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance, Journal of Materials Chemistry A, 2015, 3: 19765-19773.

[40] Guo Lingyun, Ru Qiang*, et al. Pineapple-shaped ZnCo2O4 microspheres as anode materials for lithium ion batteries with prominent rate performance, Journal of Materials Chemistry A, 2015, 3: 8683-8692.

[41] Chen Chang, Ru Qiang*, et al. Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries, Electrochimica Acta, 2015, 151: 203-213.    

[42] Mo Yudi, Ru Qiang*, et al. 3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries, Electrochimica Acta, 2015, 176: 575-585.

[43] Guo Lingyun, Ru Qiang*, et al. Mesoporous ZnCo2O4 microspheres as an anode material for high-performance secondary lithium ion batteries, RSC Advances, 2015, 5(25): 19241-19247.  

[44] Chen Junfen, Ru Qiang*, et al. PSA modified 3D flower-like NiCo2O4 nanorod clusters as anode materials for lithium ion batteries, RSC Advances, 2015, 5(90): 73783-73792.

[45] An Bonan, Ru Qiang*, et al. Enhanced electrochemical performance of nanomilling Co2SnO4/C materials for lithium ion batteries, Ionics, 2015, 21(9): 2485-2493.

[46] Song Xiong, Ru Qiang*, et al. A novel porous coral-like Zn0.5Ni0.5Co2O4 as an anode material for lithium ion batteries with excellent rate performance, Journal of Power Sources, 2014, 269: 795-803.

[47] An Bonan, Ru Qiang*, et al. Facile synthesis and electrochemical performance of Co2SnO4/Co3O4 nanocomposite for lithium-ion batteries, Materials Research Bulletin, 2014, 60: 640-647.

[48] Chen Chang, Ru Qiang*, et al. Preparation and electrochemical properties of Co2SnO4/graphene composites, Acta Physica Sinica, 2014, 63(19): 198201.

[49] Song Xiong, Ru Qiang*, et al. A novel fiber bundle structure ZnCo2O4 as a high capacity anode material for lithium-ion battery, Journal of Alloys and Compounds, 2014, 606: 219-225.

[50] Sun Dawei, An Bonan, Ru Qiang*, et al. Porous structure SnSb/amorphous carbon core-shell composite as high capacity anode materials for lithium ion batteries, Journal of Solid State Electrochemistry, 2014, 18(9): 2573-2579.

[51]  Li Juan, Ru Qiang*, et al. Lithium intercalation properties of SnSb/C composite in carbon thermal reduction as the anode material for lithium ion battery, Acta Physica Sinica, 2014, 63(16): 168201.

[52]  Mo Yudi, Ru Qiang*, et al. A novel dendritic crystal Co3O4 as high-performance anode materials for lithium-ion batteries, Journal of Applied Electrochemistry, 2014, 44(7): 781-788.

[53]  Song Xiong, Ru Qiang*, et al. Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery, Journal of Alloys and Compounds, 2014, 585: 518-522.

[54]  Zhang Beibei, Wang Caiyan, Ru Qiang*, et al. SnO2 nanorods grown on MCMB as the anode material for lithium ion battery, Journal of Alloys and Compounds, 2013, 581: 1-5.

[55]  Li Juan, Ru Qiang*, et al. Spherical nano-SnSb/MCMB/carbon core-shell composite for high stability lithium ion battery anodes, Electrochimica Acta, 2013, 113: 505-513.

[56]  Li Juan, Ru Qiang*, et al. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery, Acta Physica Sinica, 2013, 62(9): 098201.

[57]  Ru Qiang*, Li Yanling, et al. The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation, Acta Phys. Sinica, 2012, 61(3): 038201.

[58] Ru Qiang, Tian Qin, et al. Lithium intercalation mechanism for beta-SnSb in Sn-Sb thin films, International Journal of Minerals, Metallurgy, and Materials, 2011,18(2): 216-222.

[59] Ru Qiang, Peng Wei, et al. First-principles calculations and experimental studies of Sn-Zn alloys as negative electrode materials for lithium-ion batteries, Rare Metals, 2011, 30(2): 160–165.

[60] Ru Qiang, Hu Shejun, et al. First-principles study of the electronic structure and elastic property of Li1-xFePO4, Acta Physica Sinica, 2011, 60(3): 036301.

[61] Ru Qiang, Hu Shejun, et al. First-principle study on NiSn0.5Ti0.5 phase as electrode materials for lithium ion battery, Chinese Science Bulletin, 2010, 55(27–28): 3113–3117.

[62] ......持续更新中

 6、发明专利申请中国发明专利10余项。......持续更新中