School of Physics and Telecommunication Engineering/DeputySenior 2021-02-17 11:20:03 From:School of Physics and Telecommunication Engineering Hits: Favorite
汝强,男,博士,副教授,ruqiang@scnu.edu.cn
1、学术学位硕士招生专业:微电子学与固体电子学
2、专业学位硕士招生专业:电子信息、光学工程
1、自我介绍
华南师范大学物理与电信工程学院副教授、博士,微电子学与固体电子学专业硕士导师,国家留学基金委公派资助美国休斯敦大学访问学者。
2、研究方向与平台
(1)目前主要从事纳米功能材料在新型绿色储能材料中的应用(锂离子电池、钠离子电池、钾离子电池、锌离子电池、镁离子电池、超级电容器等)、材料的分子设计与合成等方面的研究,承担、参与了国家自然科学基金、广东省自然科学基金、广东省科技计划项目、广东省教育部产学研合作项目、广东高校优秀青年创新人才培育项目等多项课题。
(2)实验室依托“广东省高效绿色能源与环保材料工程技术研究中心”,该中心具有良好的软件、硬件测试平台。
3、毕业生情况
学生就业率良好,多分布在珠三角、长三角核心城市。多人攻读博士学位,并继续博士后深造。
4、主持/参与科技项目
[1] 国家自然科学基金:SnSbMe/MCMB异相“核-壳”结构体系的设计与嵌锂效应研究(51101062)
[2] 国家留学基金委公派项目:美国休斯敦大学访问学者,留金法[2013]5045号
[3] 广东省自然科学基金:锂离子电池高容量嵌层结构“钴酸锌/石墨烯”复合体系的设计与储锂性能研究(2014A030313436)
[4] 广州市科技计划项目:高容量异相“核壳”结构纳米锡锑基锂离子负极材料的分子设计与性能研究(2011J4100075)
[5] 广州市科技计划项目:新型高容量钠离子电池负极材料“Black P/SnMe/C”纳米多元复合体系的设计与协同储能效应研究(201607010274)
[6] 国家自然科学基金面上项目:新型核壳结构纳米硅基负极材料的分子设计及性能研究(51171065)
[7] 广东省自然科学基金重点项目:锂离子电池硅碳复合负极材料的设计及其应用研究(S2012020010937 )
[8] 国家自然科学基金委员会-广东省人民政府联合基金(重点支持项目) :高能量密度水溶液可充锂/锌电池的研究
[9] 广东省科技计划项目:面向“石墨烯/硅基”负极材料的高能诱导原位生长技术及其应用(2017A040405047)
[10] 广东省自然科学基金面上项目:高性能水系Zn离子电池钒基正极材料的结构稳定化设计、性能优化与储锌机理研究(2019A1515011615)
[11] ......持续更新中
5、发表SCI论文60余篇
[1] Su Chiquan, Ru Qiang*, et al. Biowaste-sustained MoSe2 composite as an efficient anode for sodium/potassium storage applications, Journal of Alloys and Compounds, 2021, 850.
[2] Cheng Shikun, Ru Qiang*, et al. Anionic defect-enriched ZnMn2O4 nanorods with boosting pseudocapacitance for high-efficient and durable Li/Na storage. Chemical Engineering Journal. 2021, 406.
[3] Yan Honglin, Ru Qiang*, et al. Organic pillars pre-intercalated V4+-V2O5·3H2O nanocomposites with enlarged interlayer and mixed valence for aqueous Zn-ion storage. Applied Surface Science. 2020, 534.
[4] Yan Honglin, Ru Qiang*, et al. Scalable in situ condensation fabrication of amorphous SiOX@C microbeads derived from organic silane coupling agents for lithium-ion storage. Ionics. 2020, 26:649-60.
[5] Liu Yang, Ru Qiang*, et al. Constructing volcanic-like mesoporous hard carbon with fast electrochemical kinetics for potassium-ion batteries and hybrid capacitors Check updates, Applied Surface Science, 2020, 525.
[6] Gao Ping, Ru Qiang*, et al. A Durable Na0.56V2O5 Nanobelt Cathode Material Assisted by Hybrid Cationic Electrolyte for High-Performance Aqueous Zinc-Ion Batteries, Chemelectrochem, 2020, 7: 283-288.
[7] Shi Zhenglu, Ru Qiang*, et al. Hierarchically Rambutan-Like Zn3V3O8 Hollow Spheres as Anodes for Lithium-/Potassium-Ion Batteries, Energy Technology,2020, 8.
[8] Su Chiquan, Ru Qiang*, et al. 3D pollen-scaffolded NiSe composite encapsulated by MOF-derived carbon shell as a high-low temperature anode for Na-ion storage, Composites Part B, 2019, 179, 107538.
[9] Zhang Peng, Gao Yuqing, Ru Qiang*, et al. Scalable preparation of porous nano-silicon/TiN@carbon anode for lithium-ion batteries, Applied Surface Science, 2019, 498: 143829.
[10] Zhang Peng, Ru Qiang*, et al. Porous nano-silicon/TiO2/rGO@carbon architecture with 1000-cycling lifespan as superior durable anodes for lithium-ion batteries, Ionics, 2019, 25(10): 4675-4684.
[11] Yan Honlin, Ru Qiang*, et al. Lamellar V5O12·6H2O Nanobelts Coupled with Inert Zn(OH)2·0.5H2O as Cathode for Aqueous Zn2+/Nonaqueous Na+ Storage Applications, Energy Technology, 2019, 8(3): 1901105.
[12] Cheng Shikun, Ru Qiang*, et al. Micro-emulsion strategy used to prepare soybean oil-tailored 1D porous ZnCo2O4 cuboid morphology providing a durable performance of the anodes of lithium ion batteries, Journal of Alloys and Compounds, 2019, 809: 151703.
[13] Liu Peng, Ru Qiang*, et al. One-step synthesis of Zn2GeO4/CNT-O hybrid with superior cycle stability for supercapacitor electrodes, Chemical Engineering Journal, 2019, 374: 29-38.
[14] Cheng Shikun, Ru Qiang*, et al. Plant Oil-Inspired 3D Flower-Like Zn3V3O8 Nanospheres Coupled with N-Doped Carbon as Anode Material for Li-/Na-Ion Batteries, Energy Technology, 2019, 7(11):1900754.
[15] Gao Yuqing, Ru Qiang*, et al. Mosaic Red Phosphorus/MoS2 Hybrid as an Anode to Boost Potassium-Ion Storage, ChemElectroChem, 2019, 6(17): 4689-4695.
[16] Zhang Peng, Ru Qiang*, et al. Hierarchically 3D structured milled lamellar MoS2/nano-silicon@carbon hybrid with medium capacity and long cycling sustainability as anodes for lithium-ion batteries, Journal of Materials Science & Technology, 2019, 35(9): 1840-1850.
[17] Liu Yang, Ru Qiang*, et al. Synthesis and Electrochemical Research of Milled Antimony and Red Phosphorus Hybrid Inlaid with Graphene Sheets as Anodes for Lithium-Sodium Storage, Energy Technology, 2019, 7(6): 1801022.
[18] Liu Peng, Ru Qiang*, et al. Harnessing the synergic lithium storage and morphology evolution of 1D bundle-like NiCo2O4@TiO2 hybrid to prolong the cycling life for lithium ion batteries, Chemical Engineering Journal, 2018, 350: 902-910.
[19] Ru Qiang*, Wang Zhen, et al. Self Assembled Rice Ball-Like ZnCo2O4 Inlaid on rGO as Flexible Anodes with High Lithium Storage Capability and Superior Cycling Stability, Energy Technology, 2018, 6(10): 1899-1903.
[20] Guo Qing, Ru Qiang*, et al. One-Step Fabrication of Carbon Nanotubes-Decorated Sn4P3 as a 3D Porous Intertwined Scaffold for Lithium-Ion Batteries, ChemElectroChem, 2018, 5(15): 2150-2156.
[21] Wang Bei, Ru Qiang*, et al. Ni12P5 Nanoparticles Hinged by Carbon Nanotubes as 3D Mesoporous Anodes for Lithium-Ion Batteries, ChemElectroChem, 2018, 5(11): 1467-1473.
[22] Guo Qing, Ru, Qiang*, et al. The electrochemical confrontation between CoP microflake and Co3O4 microsphere via a similar synthesis process as anodes for lithium ion batteries, Journal of Alloys and Compounds, 2017, 728: 910-916.
[23] Guo Qing, Ru Qiang*, et al. Design and Synthesis of Mesoporous Honeycomb‐Like CoP/Co2P Hybrids as Anode with a High Cyclic Stability in Lithium‐Ion Batteries, Energy Technology, 2017, 5(12): 2294-2299.
[24] Ru Qiang, Zhao doudou, et al. Three-dimensional rose-like ZnCo2O4 as a binder-free anode for sodium ion batteries, Journal of Materials Science: Materials in Electronics, 2017, 28(20): 15451–15456.
[25] Wang Zhen, Ru Qiang*, et al. Solvothermal Fabrication of Hollow Nanobarrel-Like ZnCo2O4 Towards Enhancing the Electrochemical Performance of Rechargeable Lithium-Ion Batteries, ChemElectroChem, 2017, 4(9): 2218-2224.
[26] Wang Bei, Ru Qiang*, et al. Fabrication of One-Dimensional Mesoporous CoP Nanorods as Anode Materials for Lithium-Ion Batteries, European Journal of Inorganic Chemistry, 2017, 31: 3729-3735.
[27] Ru Qiang, Chen Xiaoqiu, et al. Biological carbon skeleton of lotus-pollen surrounded by rod-like Sb2S3 as anode material in lithium ion battery, Materials Letters, 2017, 198: 57–60.
[28] Chen Xiaoqiu, Ru Qiang*, et al. Ternary Sn-Sb-Co alloy particles embedded in reduced graphene oxide as lithium ion battery anodes, Materials Letters, 2017, 191: 218–221.
[29] Wang Zhen, Ru Qiang*, et al. Facile synthesis of porous peanut-like ZnCo2O4 decorated with rGO/CNTs toward high-performance lithium ion batteries, Journal of Materials Science: Materials in Electronics, 2017, 28(12): 9081–9090.
[30] Zhao Doudou, Ru Qiang*, et al. Design and synthesis of a novel 3D hierarchical mesocarbon microbead as anodes for lithium ion batteries and sodium ion batteries, Ionics, 2017, 23(4): 897–905.
[31] Mo Yudi, Ru Qiang*, et al. The sucrose-assisted NiCo2O4@C composites with enhanced lithium storage properties, Carbon, 2016, 109: 616-623.
[32] Chen Chang, Liu Borui, Ru Qiang*, et al. Fabrication of cubic spinel MnCo2O4 nanoparticles embedded in graphene sheets with their improved lithium-ion and sodium-ion storage properties, Journal of Power Sources, 2016, 326: 252-263.
[33] Chen Junfen, Ru Qiang*, et al. Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries, Physical Chemistry Chemical Physics, 2016, 18: 18949-18957.
[34] Ru Qiang*, Chen Xiaoqiu, et al. The lamella SnSbCux/MCMB/carbon composite as high stability and durable anodes for lithium ion battery, Electrochimica Acta, 2016, 193: 180-190.
[35] Ru Qiang*, Song Xiong, et al. Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances, Journal of Alloys and Compounds, 2016, 654: 586-592.
[36] Mo Yudi, Ru Qiang*, et al. The design and synthesis of porous NiCo2O4 ellipsoids supported by flexile carbon nanotubes with enhanced lithium-storage properties for lithium-ion batteries, RSC Advances, 2016, 6: 31925–31933.
[37] Chen Chang, Liu Borui, Ru Qiang*, et al. Chemically integrated hierarchical hybrid zinc cobaltate/reduced graphene oxide microspheres as an enhanced lithium-ion battery anode, RSC Advances, 2016, 6: 4914-4924.
[38] Chen Xiaoqiu, Ru Qiang*, et al. Flake structured SnSbCo/MCMB/C composite as high performance anodes for lithium ion battery, Journal of Alloys and Compounds, 2015,646: 794-802.
[39] Mo Yudi, Ru Qiang*, et al. Three-dimensional NiCo2O4 nanowire arrays: preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance, Journal of Materials Chemistry A, 2015, 3: 19765-19773.
[40] Guo Lingyun, Ru Qiang*, et al. Pineapple-shaped ZnCo2O4 microspheres as anode materials for lithium ion batteries with prominent rate performance, Journal of Materials Chemistry A, 2015, 3: 8683-8692.
[41] Chen Chang, Ru Qiang*, et al. Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries, Electrochimica Acta, 2015, 151: 203-213.
[42] Mo Yudi, Ru Qiang*, et al. 3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries, Electrochimica Acta, 2015, 176: 575-585.
[43] Guo Lingyun, Ru Qiang*, et al. Mesoporous ZnCo2O4 microspheres as an anode material for high-performance secondary lithium ion batteries, RSC Advances, 2015, 5(25): 19241-19247.
[44] Chen Junfen, Ru Qiang*, et al. PSA modified 3D flower-like NiCo2O4 nanorod clusters as anode materials for lithium ion batteries, RSC Advances, 2015, 5(90): 73783-73792.
[45] An Bonan, Ru Qiang*, et al. Enhanced electrochemical performance of nanomilling Co2SnO4/C materials for lithium ion batteries, Ionics, 2015, 21(9): 2485-2493.
[46] Song Xiong, Ru Qiang*, et al. A novel porous coral-like Zn0.5Ni0.5Co2O4 as an anode material for lithium ion batteries with excellent rate performance, Journal of Power Sources, 2014, 269: 795-803.
[47] An Bonan, Ru Qiang*, et al. Facile synthesis and electrochemical performance of Co2SnO4/Co3O4 nanocomposite for lithium-ion batteries, Materials Research Bulletin, 2014, 60: 640-647.
[48] Chen Chang, Ru Qiang*, et al. Preparation and electrochemical properties of Co2SnO4/graphene composites, Acta Physica Sinica, 2014, 63(19): 198201.
[49] Song Xiong, Ru Qiang*, et al. A novel fiber bundle structure ZnCo2O4 as a high capacity anode material for lithium-ion battery, Journal of Alloys and Compounds, 2014, 606: 219-225.
[50] Sun Dawei, An Bonan, Ru Qiang*, et al. Porous structure SnSb/amorphous carbon core-shell composite as high capacity anode materials for lithium ion batteries, Journal of Solid State Electrochemistry, 2014, 18(9): 2573-2579.
[51] Li Juan, Ru Qiang*, et al. Lithium intercalation properties of SnSb/C composite in carbon thermal reduction as the anode material for lithium ion battery, Acta Physica Sinica, 2014, 63(16): 168201.
[52] Mo Yudi, Ru Qiang*, et al. A novel dendritic crystal Co3O4 as high-performance anode materials for lithium-ion batteries, Journal of Applied Electrochemistry, 2014, 44(7): 781-788.
[53] Song Xiong, Ru Qiang*, et al. Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery, Journal of Alloys and Compounds, 2014, 585: 518-522.
[54] Zhang Beibei, Wang Caiyan, Ru Qiang*, et al. SnO2 nanorods grown on MCMB as the anode material for lithium ion battery, Journal of Alloys and Compounds, 2013, 581: 1-5.
[55] Li Juan, Ru Qiang*, et al. Spherical nano-SnSb/MCMB/carbon core-shell composite for high stability lithium ion battery anodes, Electrochimica Acta, 2013, 113: 505-513.
[56] Li Juan, Ru Qiang*, et al. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery, Acta Physica Sinica, 2013, 62(9): 098201.
[57] Ru Qiang*, Li Yanling, et al. The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation, Acta Phys. Sinica, 2012, 61(3): 038201.
[58] Ru Qiang, Tian Qin, et al. Lithium intercalation mechanism for beta-SnSb in Sn-Sb thin films, International Journal of Minerals, Metallurgy, and Materials, 2011,18(2): 216-222.
[59] Ru Qiang, Peng Wei, et al. First-principles calculations and experimental studies of Sn-Zn alloys as negative electrode materials for lithium-ion batteries, Rare Metals, 2011, 30(2): 160–165.
[60] Ru Qiang, Hu Shejun, et al. First-principles study of the electronic structure and elastic property of Li1-xFePO4, Acta Physica Sinica, 2011, 60(3): 036301.
[61] Ru Qiang, Hu Shejun, et al. First-principle study on NiSn0.5Ti0.5 phase as electrode materials for lithium ion battery, Chinese Science Bulletin, 2010, 55(27–28): 3113–3117.
[62] ......持续更新中
6、发明专利:申请中国发明专利10余项。......持续更新中