NEWS

Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides

Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides

Nature Communications volume 14, Article number: 592 (2023

Abstract

The great challenge for the growth of non-centrosymmetric 2D single crystals is to break the equivalence of antiparallel grains. Even though this pursuit has been partially achieved in boron nitride and transition metal dichalcogenides (TMDs) growth, the key factors that determine the epitaxy of non-centrosymmetric 2D single crystals are still unclear. Here we report a universal methodology for the epitaxy of non-centrosymmetric 2D metal dichalcogenides enabled by accurate time sequence control of the simultaneous formation of grain nuclei and substrate steps. With this methodology, we have demonstrated the epitaxy of unidirectionally aligned MoS2 grains on a, c, m, n, r and v plane Al2O3 as well as MgO and TiO2 substrates. This approach is also applicable to many TMDs, such as WS2, NbS2, MoSe2, WSe2 and NbSe2