华南师范大学物理学院/正高 2020-12-18 23:43:00 来源:华南师范大学物理学院 点击: 收藏本文
基本情况
薛正远,研究员,博士生导师, 物理学院 副院长
Email:zyxue at scnu.edu.cn
通讯地址: 广州市番禺区大学城华南师范大学物理学院 510006
常年招聘青年英才和博士后,详见招聘公告;
每年招收基地班本科生、物理学专业硕博研究生。
研究方向
利用光与物理相互作用理论,调控量子体系相互作用哈密顿量,应用于量子物理及其应用的研究。发表Physical Review系列论文60+篇,其中PRL 6 篇,部分成果详见 WoS个人论文页面 或ArXiv个人论文页面。
关注的研究领域:1)固态量子计算;2)量子精密测量;
3)量子纠错与错误缓解;4)拓扑量子模拟;5)基础量子物理
Keywords: Quantum gates, Geometric Phases, Quantum Parameter Estimation, Quantum Error Correction,
Quantum Error Mitigation, Circuit QED, Superconducting/ Semiconductor qubits
研究组在读学生
博士生:2020级:谢旭丹,刘启沛;2022级:梁铭杰,朱媛珂;
2024级:郭绮琪;2025级:李强
硕士生:2023级:邓柏讯,杜欣莹,林婷,王乐川,邹俊;
2024级:崔非凡,洪颖,李泽,曾凤琴
2025级:陈鸿楷,林佳,林心仪
基地班本科生:22级:秦子豪,袁义涵;23级:曾佳全;24级:梁喆,马晓兰
科研项目
[6] 2023.01-2026.12,国家自然科学基金(面上):强鲁棒的几何量子计算理论及其在超导量子电路的物理实现研究
[5] 2021.11-2026.10,科技部重大项目(子课题):硅基量子点量子计算研究
[4] 2019.01-2023.12,广东省重大科技专项(子课题):基于超导量子芯片的专用量子计算机研发
[3] 2019.01-2022.12,国家自然科学基金(面上):基于线路量子电动力学的容错量子计算研究
[2] 2013.01-2017.08,科技部重大项目(子课题):基于自旋量子调控的固态量子计算研究
[1] 2011.01-2013.12,国家自然科学基金(青年):几何与拓扑相位及其在容错量子计算中的应用
教学与教研
课程教学
2022年至今,《物理学导论》,秋季学期,本科生课程
2022年至今,《物理学前沿讲座》,秋季学期,研究生课程
2018年至今,《量子信息学》,秋季学期,本研课程
2021-2022年,《原子物理学》,《原子物理前沿研讨》,本科生课程
2010-2017年,《量子力学》,本科生课程
教学成果与项目
2025,第一完成人,校级教学成果奖(研究生)一等奖
2025,第一完成人,校级教学成果奖(本科)一等奖
2023,第一完成人,校级教学成果奖(本科)二等奖
--------------------------
2025,主持,教育部“拔尖计划2.0”研究课题
2025,主持,广东省研究生教育创新计划项目,研究生学术论坛
2019,主持,校级质量工程项目,全英课程—《量子力学》
近期部分论文
综述论文
[3] Recent advances on nonadiabatic geometric quantum computation,
Z.-Y. Xue* and C.-Y. Ding, Front. Phys.,
[2] Nonadiabatic holonomic quantum computation and its optimal control,
Y. Liang, P. Shen, T. Chen, and Z.-Y. Xue*, Sci. China Inf. Sci. 66, 180502 (2023).
[1] Topological photonics on superconducting quantum circuits with parametric couplings,
Z.-Y. Xue* and Y. Hu*, Adv. Quantum Technol. 4, 2100017 (2021).
[30] Error-resilient geometric multiqubit entangling gates in Rydberg atoms,
Y. Liang, X.-D. Tian, L.-N. Ji*, and Z.-Y. Xue*, Phys. Rev. Appl. 24, 034025 (2025).
[29] Variational quantum algorithm for solving the Liouvillian gap,
X.-D. Xie, Z.-Y. Xue*, and D.-B. Zhang*, Chin. Phys. Lett. 42, 080605 (2025).
[28] Experimental proposal on non-Abelian Aharonov-Bohm caging effect with a single trapped ion,
Z. Liu, W. Yao, S. Li, Y. Li, Y. Li, Z.-Y. Xue*, and Y. Lin*, Chin. Phys. Lett. 42, 060501 (2025).
[27] Error-mitigated geometric quantum control over an oscillator,
M.-J. Liang, T Chen*, and Z.-Y. Xue*, Phys. Rev. Appl. 23, 024033 (2025).
[26] High-fidelity initialization of a logical qubit with multiple injections,
Z.-C. He and Z.-Y. Xue*, Phys. Rev. A 111, 052419 (2025).
[25] Error mitigated initialization of surface codes with non-Pauli stabilizers,
Z.-C. He and Z.-Y. Xue*, Phys. Rev. A 110, 052441 (2024).
[24] Ultrahigh-precision Hamiltonian parameter estimation in a superconducting circuit,
S. Li#, D.-J. Pan#, Y.-K. Zhu#, J.-L. Zhou, W.-C. Liao, W.-X. Zhang, Z.-T. Liang, Q.-X. Lv, H. Yu,
Z.-Y. Xue*, H. Yan*, and S.-L. Zhu*, Phys. Rev. Lett. 132, 250204 (2024).
[23] Nonadiabatic geometric quantum gates with on-demand trajectories,
Y. Liang and Z.-Y. Xue*, Phys. Rev. Appl. 21, 064048 (2024).
[22] Scalable protocol to mitigate ZZ crosstalk in universal quantum gates,
Y. Liang, M.-J. Liang, S. Li, Z. D. Wang*, and Z.-Y. Xue*, Phys. Rev. Appl. 21, 024016 (2024).
[21] Experimental implementation of noncyclic and nonadiabatic geometric quantum gates in a superconducting circuit,
Z. Ma#, J. Xu#, T. Chen#, Y. Zhang, W. Zheng, D. Lan, Z.-Y. Xue*, X. Tan*, and Y. Yu,
Phys. Rev. Appl. 20, 054047 (2023).
[20] State-independent nonadiabatic geometric quantum gates,
Y. Liang#, P. Shen#, L.-N. Ji, and Z.-Y. Xue*, Phys. Rev. Appl. 19, 024051 (2023).
[19] Experimental demonstration of swift analytical universal quantum gates on nearby transitions,
Y. Li#, Z.-C. He#, X.-X. Yuan#, M. Zhang, C. Liu, Y.-X. Wu, M. Zhu, X. Qin, Z.-Y. Xue*, Y. Lin*, and J. Du*,
Phys. Rev. Appl. 18, 034047 (2022).
[18] Path-optimized nonadiabatic geometric quantum computation on superconducting qubits
C.-Y. Ding, L.-N. Ji, T. Chen*, and Z.-Y. Xue*, Quantum Sci. Technol. 7, 015012 (2022). [Time cited: 21]
[17] Composite short-path nonadiabatic holonomic quantum gates,
Y. Liang#, P. Shen#, T. Chen, and Z.-Y. Xue*, Phys. Rev. Appl. 17, 034015 (2022). [Time cited: 29]
[16] Dynamically corrected nonadiabatic holonomic quantum gates,
S. Li and Z.-Y. Xue*, Phys. Rev. Appl. 16, 044005 (2021). [Time cited: 19]
[15] Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting Circuits,
T. Chen, P. Shen, and Z.-Y. Xue*, Phys. Rev. Appl. 14, 034038 (2020). [Time cited: 35]
[14] High-fidelity and robust geometric quantum gates that outperform dynamical ones,
T. Chen and Z.-Y. Xue*, Phys. Rev. Appl. 14, 064009 (2020). [Time cited: 41]
[13] Experimental realization of nonadiabatic holonomic single-qubit quantum gates with optimal control in a trapped ion,
M.-Z. Ai, S. Li, Z. Hou, R. He, Z.-H. Qian, Z.-Y. Xue*, J.-M. Cui*, Y.-F. Huang*, C.-F. Li*, and G.-C. Guo,
Phys. Rev. Appl. 14, 054062 (2020). [Time cited: 55]
[12] Fast holonomic quantum computation on superconducting circuits with optimal control,
S. Li, T. Chen, and Z.-Y. Xue*, Adv. Quantum Technol. 3, 2000001 (2020). [Time cited: 59]
[11] Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit,
Y. Xu#, Z. Hua#, T. Chen#, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z.-Y. Xue*, and L. Sun*,
Phys. Rev. Lett. 124, 230503 (2020). [Time cited: 108]
[10] Plug-and-play approach to nonadiabatic geometric quantum gates,
B.-J. Liu, X.-K. Song, Z.-Y. Xue*, X. Wang*, and M.-H. Yung*,
Phys. Rev. Lett. 123, 100501 (2019). [Time cited: 149]
[9] Observation of topological magnon insulator states in a superconducting circuit,
W. Cai, J. Han, F. Mei*, Y. Xu, Y. Ma, X. Li, H. Wang, Y. P. Song, Z.-Y. Xue, Z.-q. Yin, S. Jia, and L. Sun*,
Phys. Rev. Lett. 123, 080501 (2019). [Time cited: 107]
[8] Single-loop and composite-loop realization of nonadiabatic holonomic quantum gates in a decoherence-free subspace,
Z. Zhu#, T. Chen#, X. Yang, J. Bian, Z.-Y. Xue*, and X. Peng*,
Phys. Rev. Appl. 12, 024024 (2019). [Time cited: 84]
[7] Nonadiabatic geometric quantum computation with parametrically coupled transmons,
T. Chen and Z.-Y. Xue*, Phys. Rev. Appl. 10, 054051 (2018). [Time cited: 79]
[6] Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings,
X. Li#, Y. Ma#, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z.-Y. Xue*, Z.-q. Yin*, and L. Sun*,
Phys. Rev. Appl. 10, 054009 (2018). [Time cited: 136]
[5] Single-loop realization of arbitrary non-adiabatic holonomic single-qubit gates in a superconducting circuit,
Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z.-Y. Xue*, Z.-q. Yin*, and L. Sun*,
Phys. Rev. Lett. 121, 110501 (2018). [Time cited: 140]
[4] Implementing universal nonadiabatic holonomic quantum gates with transmons,
Z.-P. Hong#, B.-J. Liu#, J.-Q. Cai#, X.-D. Zhang*, Y. Hu, Z. D. Wang, and Z.-Y. Xue*,
Phys. Rev. A 97, 022332 (2018). [Time cited: 74]
[3] Nonadiabatic holonomic quantum computation with dressed-state qubits,
Z.-Y. Xue*, F.-L. Gu, Z.-P. Hong, Z.-H. Yang, D.-W. Zhang, Y. Hu*, and J. Q. You*,
Phys. Rev. Appl. 7, 054022 (2017). [Time cited: 86]
[2] Nonadiabatic holonomic quantum computation with all-resonant control,
Z.-Y. Xue*, J. Zhou*, Y.-M. Chu, and Y. Hu*, Phys. Rev. A 94, 022331 (2016). [Time cited: 68]
[1] Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits,
Z.-Y. Xue*, J. Zhou, and Z. D. Wang, Phys. Rev. A 92, 022320 (2015). [Time cited: 121]
研究组前组员
2025
博士生:贺郅程,清华大学博士后;
硕士生:胡佳琪,中学教师,深圳;孙守岳,延边大学读博;
本科生:高静,保研(北航);陈永森,中学教师,广州;
2024
博士后:刘佳,粤港澳大湾区量子科学中心 副研究员
博士生:沈普,汉江师范学院讲师;
硕士生:陈玥,中学教师,深圳;吴晓霞,中学教师,深圳;吴奕璇,中学教师,广州;
本科生:洪颖,本校保研;崔非凡,本校保研;
2023
博士生:梁艳,广西师范大学讲师;冀丽娜,华南师大博士后;广大附中(2025)
硕士生:刘晓庆,中学教师,无锡;袁伟平,百度量子北京,物理所读博(2024);
本科生:林婷,本校读研;刘昕鑫,浙江大学读研;李泽,本校读研(2024);谢扬,SIT读研(2024)
2022
博士生:丁成赟,安庆师范大学讲师 ;李赛,华南师大特聘副研究员
硕士生:陈梅雅,中学教师,厦门;
本科生:梁铭杰,本校保研(2022),硕博连读(2024)
2021
博士后:张程贤,广西大学副教授
博士生:陈涛,香港大学博士后 ;华南师大特聘研究员 (2022)
硕士生:薛静,中学教师,成都;谢文鑫
本科生:吴奕璇,本校保研;官紫妍,保研(华南理工大学)