华南师范大学物理学院/正高 2020-12-18 23:45:00 来源:华南师范大学物理学院 点击: 收藏本文
艾保全, 男, 理论物理研究所
教授, 博士
aibq@scnu.edu.cn
个人主页: https://url.scnu.edu.cn/record/view/index.html?key=491267f4474e956c708a040331c3eac4
通讯地址: 华南师范大学物理学院
个人简介:
二级教授,博士生导师,广东省“珠江学者”特聘教授,全国统计物理与复杂系统学术委员会委员。主要从事低维体系中物质和能量的输运以及非平衡统计动力学理论的工作,取得了一些有意义的研究成果。 在PRL/PRE/JCP/NJP/SM/APL等重要SCI 期刊上发表论文100余篇,论文被正面他引一千八百多次,单篇论文最高他引170余次, 有11篇论文被物理学最顶级综述期刊Rev. Mod. Phys.正面引用。 2015年以第一完成人获得广东省科学技术奖(自然科学类)二等奖, 2012年入选广东省“千百十”人才工程省级培养对象,2005年获得广东省优秀博士学位论文。另外,还主持完成国家及省部级项目十多项。
一. 教育工作经历
2005-至今,华南师范大学物理学院,讲师,副教授,教授
2014.08-2014.10, 香港大学化学系,访问教授
2008-2010, 香港浸会大学非线性研究中心,博士后研究
2004-2005 香港大学机械工程系,博士后研究
1999.9-2004.7 中山大学物理系博士研究生,获博士学位
1995.9-1999.7 湖北大学本科生,获学士学位
二. 研究兴趣
低维系统物质和能量的非平衡定向输运, 生物非线性中的噪声效应, 低维系统热传导。
1) 活性软物质的非平衡输运: 自驱动粒子(胶体颗粒)的集体运动,定向输运,相分离,混合颗粒的分离以及微纳马达的输运。
2) 随机过程和布朗运动: 布朗粒子的扩散和定向输运,布朗马达和分子马达,随机热力学性质,以及非平衡统计理论。
3) 低维材料热传导: 研究低维材料(碳纳米管, 石墨稀), 热流非平衡定向输运的特性, 正常和反常热传导, 负微分热阻, 热整流效应等等。
4) 理论生物物理: 生物非线性中的噪声效应, 光合作用过程的量子输运, 量子马达。
三. 主要发表论文(*通讯作者)
[72] Bao-quan Ai, Rui-xue Guo, Chun-hua Zeng, Ya-feng He, Rotational inertia-induced glassy transition in chiral particle systems, Phys. Rev. E 109 (2024) 064902.
[71] Jia-Jian Li, Rui-xue Guo, Bao-quan Ai*, Spontaneous separation of attractive chiral mixtures, Phys. Rev. E 110 (2024) 024608.
[70] Jia-Jian Li, Rui-xue Guo, Bao-quan Ai*, Trapping of deformable active particles by a periodic background potential, Phys. Rev. E 109 (2024) 044134.
[69] Zhao-sha Tang, Jia-Jian Li, Wei-jing Zhu, Bao-quan Ai*, Collective self-optimization of binary mixed heterogeneous populations, Phys. Rev. E 109 (2024) 024405.
[68] Wan-huan Liu, Wei-jing Zhu, Bao-quan Ai*, Collective motion of pulsating active particles in confined structures, New Journal of Physcis 26 (2024) 023017.
[67] Bao-quan Ai, Brownian motors powered by nonreciprocal interactions, Phys. Rev. E 107 (2023)064409.
[66] Bao-quan Ai, Shan Quan, Feng-guo Li, Spontaneous demixing of chiral active mixtures in motility-induced phase separation, New Journal of Physics 25 (2023)063025.
[65] Bao-quan Ai, J. Ma, Chun-hua Zeng, and Ya-feng He, Emergence of macroscopic directional motion of deformable active cells in confined structures, Phys. Rev. E 107 (2023) 024406.
[64] Jia-jian Li, Yu-ling He, Bao-quan Ai*, Solid-liquid transition induced by rigidity disparity in a binary mixture of cell tissues, Soft Matter 19 (2023) 3849.
[63] Jing-Ran Li, Wei-jing Zhu, Jia-Jian Li, Jian-Chun Wu and Bao-quan Ai*, Chirality-induced directional rotation of a symmetric gear in a bath of chiral active particles, New Journal of Physics 25(2023)043031 .
[62] Jia-Jian Li ,Fu-Jun Lin and Bao-quan Ai*, Directed transport of a deformable particle in confined periodic structures, New Journal of Physics 24(2022) 073027.
[61] Yuhui Luo, Chunhua Zeng, Tao Huang and Bao-quan Ai, Anomalous transport tuned through stochastic resetting in the rugged energy landscape of a chaotic system with roughness, Phys. Rev. E 106 (2022)034208.
[60]Jian-chu Wu, Fu-jun Lin, Bao-quan Ai*,Absolute negative mobility of active polymer chains in steady laminar flows, Soft Matter 18 (2022)1194.
[59] Teng-chao Li, Wei Zhong, Bao-quan Ai, Alexander V. Panfilov, and Hans Dierckx, Control of the chirality of spiral waves and recreation of spatial excitation patterns through optogenetics, Phys. Rev. E 105 (2022) 014214.
[58] Bao-quan Ai*, Rui-xue Guo, Large-scale demixing in a binary mixture of cells with rigidity disparity in biological tissues, Phys. Rev. E 104 ( 2021)064411.
[57] Wei-chen Guo, Bao-quan Ai*, Liang He*,Data-driven criterion for the solid-liquid transition of two-dimensional self-propelled colloidal particles far from equilibrium, Phys. Rev. E 104 (2021)044611.
[56]Wei-chen Guo, Bao-quan Ai*, Liang He*,Scanning-probe and information-concealing machine learning intermediate hexatic phase and critical scaling of solid-hexatic phase transition in deformable particles, EPL 136(2021) 48002.
[55]Bao-quan Ai*, Guo-Hao Xu, Jiajian Li, Ya-Feng He*, Rectification of self-propelled cells in confluent tissues, EPL 136(2021)58002.
[54] Jia-jian Li, Bao-quan Ai*, Melting of two-dimensional biological tissues containing active Ornstein extendashUhlenbeck cells, New Journal of Physics 23(2021) 083044.
[53]Guo-hao Xu, Bao-quan Ai*, Rotation reversal of a ratchet gear powered by active particles, Soft Matter 17(2021)7124.
[52] Qing-Xian Lv, Yan-Xiong Du*, Zhen-Tao Liang, Hong-Zhi Liu, Jia-Hao Liang, Lin-Qing Chen, Li-Ming Zhou, Shan-Chao Zhang, Dan-Wei Zhang,Bao-quan Ai, Hui Yan*, Shi-Liang Zhu*, Measurement of Spin Chern Numbers in Quantum Simulated Topological Insulators, Physical Review Letters 127(2021)136802.
[51] Ya-feng He*, Bao-quan Ai*, Chao-xing Dai, Chao Song, Rui-qi Wang, Wen-tao Sun, Fu-heng Liu, Yan Feng*, Experimental Demonstration of a Dusty Plasma Ratchet Rectification and Its Reversal, Physical Review Letters 124 (2020) 075001.
[50] Yuhui Luo, Chunhua Zeng*, Bao-quan Ai*, Strong-chaos-caused negative mobility in a periodic substrate potential, Phys. Rev. E 102 (2020) 042114.
[49] Fu-jun Lin, Jing-Jing Liao, Bao-quan Ai*, Separation and alignment of chiral active particles in a rotational magnetic field, Journal of Chemical Physics 152(2020)224903.
[48] Bao-quan Ai, Bu-yun Zhou, Xiao-miao Zhang, Binary mixtures of active and passive particles on a sphere, Soft Matter 16(2020) 4710.
[47] Wei-jing Zhu, Teng-chao Li, Wei-rong Zhong, Bao-quan Ai*, Rectification and separation of mixtures of active and passive particles driven by temperature difference, Journal of Chemical Physics 152(2020)184903.
[46] Jian-Chun Wu*, Tian-Wen Dong, Gui-Wen Jiang, Meng An*, Bao-quan Ai*, Particle separation induced by triangle obstacles in a straight channel, Journal of Chemical Physics 152(2020)034901.
[45] Bao-quan Ai, Wei-jing Zhu, Jing-jing Liao, Collective transport of polar active particles on the surface of a corrugated tube, New Journal of Physics 21(2019)034901.
[44] Bao-quan Ai, Jia-jian Li, Zhu-qin Li, J. Xiong, Y. F. He, Rectification of chiral active particles driven by transversal temperature difference, Journal of Chemical Physics 150 (2019)184905.
[43] Bao-quan Ai, Fan-hua Meng, Yu-ling He, Xiao-miao Zhang, Flow and clogging of particles in shaking random obstacles, Soft Matter 15(2019)3443.
[42] Jing-jing Liao,Xiao-qun Huang,and Bao-quan Ai*, Current reversals of active particles in the time-oscillating potentials, Soft Matter 14(2018)7850.
[41] Wei-jing Zhu, W. R. Zhong, J. W. Xiong, and Bao-quan Ai*, Transport of particles driven by the traveling obstacle arrays, Journal of Chemical Physics 149(2018)174906.
[40] Bao-quan Ai, Wei-jing Zhu, Ya-feng He, and Wei-rong Zhong, Giant negative mobility of inertial particles caused by the periodic potential in steady laminar flows, Journal of Chemical Physics 149(2018)164903.
[39] Jing-jing Liao, Wei-Jing Zhu, and Bao-quan Ai*, Transport and diffusion of paramagnetic ellipsoidal particles in a rotating magnetic field, Phys. Rev. E 97(2018)062151.
[38] Bao-quan Ai, Zhi-gang Shao, and Wei-rong Zhong, Mixing and demixing of binary mixtures of polar chiral active particles, Soft Matter 14(2018)4388.
[37] Jing-jing Liao, Xiao-qun Huang, and Bao-quan Ai*, Transport of the moving barrier driven by chiral active particles, Journal of Chemical Physics 148 (2018)094902.
[36] Bao-quan Ai, Transport and diffusion properties of Brownian particles powered by a rotating wheel, Phys. Rev. E 96(2017)012131.
[35] Bao-quan Ai and Feng-guo Li, Transport of underdamped active particles in ratchet potentials, Soft Matter 13(2017)2536.
[34] Bao-quan Ai, Ya-feng He, and Weirong Zhong, Effects of hydrodynamic interactions on rectified transport of self-propelled particles, Phys. Rev. E 95 (2017) 012116.
[33] Ya-li Ou, Shi-cai Lu, Cai-tian Hu, and Bao-quan Ai*, Bidirectional negative differential thermal resistance in three-segment Frenkel-Kontorova lattices, Journal of Physics-Condensed Matter 28 (2016)495301 (IOPSELECT).
[32] Bao-quan Ai, Ratchet transport powered by chiral active particles, Scientific Reports 6(2016)18740.
[31] Bao-quan Ai and Shi-Liang Zhu, Quantum scattering model of energy transfer in photosynthetic complexes, Laser Physics Letters 12 (2015) 125201.
[30] Qun Chen and Bao-quan Ai*, Sorting of chiral active particles driven by rotary obstacles,Journal of Chemical Physics 143 (2015)104113.
[29] Bao-quan Ai, Ya-feng He, Wei-rong Zhong, Chirality separation of mixed chiral microswimmers in a periodic channel, Soft Matter 11(2015)3852.
[28] Bao-quan Ai, Ya-feng He, and Wei-rong Zhong, Entropic Ratchet transport of interacting active Brownian particles, Journal of Chemical Physics 141(2014)194111.
[27] Jian-chun Wu and Bao-quan Ai*,Two-dimensional sub-wavelength atom localization in an electromagnetically induced transparency atomic system, Europhysics Letters 107(2014)14002.
[26] Bao-quan Ai and Jian-chun Wu, Transport of active ellipsoidal particles in ratchet potentials, Journal of Chemical Physics 140(2014)094103.
[25] Wei-rong Zhong, Zhi-Cheng Xu, Dong-qin Zheng and Bao-Quan Ai*, Thermal conductivity of graphene in noble gaseous environments, Appl. Phys. Lett. 104(2014)081914.
[24] Zhi-gang Shao, Bao-quan Ai, Wei-rong Zhong, The effect of defects on negative differential thermal resistance in symmetric graphene nanoribbons, Appl. Phys. Lett. 104(2014)013106.
[23] Ai Bao-quan, Chen Qiu-yan, He Ya-feng , Li Feng-guo, Wei-rong Zhong, Rectification and diffusion of self-propelled particles in a two-dimensional corrugated channel, Phys. Rev. E 88(2013)062129.
[22] Bao-quan Ai and Jian-chun Wu, Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation, Journal of Chemical Physics 139 (2013)034114.
[21] Feng-guo Li and Bao-quan Ai*, Current control in a two-dimensional channel with nonstraight midline and varying width. Phys. Rev. E 87(2013)062128.
[20] Ya-feng He, Bao-quan Ai, Fu-cheng Liu, Interaction of multiarmed spirals in bistable media, Phys. Rev. E 87(2013)052913.
[19] Bao-quan Ai, Ya-feng He, Feng-guo Li, and Wei-rong Zhong, Hydrodynamically enforced entropic Brownian pump, Journal of Chemical Physics 138(2013)154107.
[18] Bao-quan Ai, Meng An, and Wei-rong Zhong, Nonlinear thermal conductance in single-wall carbon nanotubes: Negative differential thermal resistance, Journal of Chemical Physics 138 (2013)034708.
[17] Bao-quan Ai and Shi-Liang Zhu, Complex quantum network model of energy transfer in photosynthetic complexes, Phys. Rev. E86 (2012) 061917.
[16] Bao-quan Ai, Zhi-gang Shao, Wei-rong Zhong, Rectified Brownian transport in corrugated channels: fractional Brownian motion and Levy flights, Journal of Chemical Physics 137 (2012)174101.
[15] Bao-quan Ai, Wei-rong Zhong, Bambi Hu, Dimension dependence of negative differential thermal resistance in graphene nanoribbons, Journal of Physical Chemistry C 116(2012)13810.
[14] Bao-quan Ai, Wei-rong Zhong, and Bambi Hu, Double negative differential thermal resistance induced by the nonlinear on-site potentials, Phys. Rev. E 83(2011)052102.
[13] Bao-quan Ai, Ya-feng He, and Wei-rong Zhong, Particle diode: Rectification of interacting Brownian ratchets, Phys. Rev. E 83(2011)051106.
[12] Bao-quan Ai and Bambi Hu, Heat conduction in deformable Frenkel-Kontoroval lattices: Thermal conductivity and negative differential thermal resistance, Phys. Rev. E 83(2011)011131.
[11] Wei-rong Zhong, Mao-ping Zhang, Bao-quan Ai*, Bambi Hu, Anomalous negative differential thermal resistance in a momentum-conserving lattice, Phys. Rev. E 84(2011)031130.
[10] Wei-rong Zhong, Mao-ping Zhang, Bao-quan Ai*, and Dong-qin Zhen, Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study, Appl. Phys. Lett. 98(2011)113107.
[9] Wei-rong Zhong, Wei-hao, Huang, Xi-rong Dong, and Bao-quan Ai*, Thermal rectification in thickness-asymmetric graphene nanoribbons, Appl. Phys. Lett. 99(2011)193104.
[8] Wei-Rong Zhong, Mao-Ping Zhang, Dong-Qin Zheng, and Bao-quan Ai*, Thermal conductivity of deformed carbon nanotubes, Journal of Applied Physics, 109(2011)074317.
[7] Bao-quan Ai, Ya-feng He, and Wei-rong Zhong, Transport in periodic potentials induced by fractional Gaussian noise, Phys. Rev. E 82(2010)061102.
[6] Bao-quan Ai, Da-hai He and Bambi Hu, Heat conduction in Frenkel-Kontoroval lattices: Thermal pumping and resonance, Phys. Rev. E 81(2010) 031124.
[5]Ya-feng He and Bao-quan Ai*, Enhancement of the longitudinal transport by a weakly transversal drive, Phys. Rev. E 81(2010)021110.
[4] Dahai He, Bao-quan Ai, H. K. Chan, and Bambi Hu, Heat conduction in the nonlinear response regime: Scaling, boundary jumps, and negative differential thermal resistance, Phys. Rev. E 81(2010)041131.
[3] Bao-quan Ai and Ya-feng He, Directed transport driven by Levy flights coexisting with subdiffusion, Journal of Chemical Physics 132(2010)094504.
[2] Ya-feng He and Bao-quan Ai and Bambi Hu, Transformation between dense and sparse spirals in symmetrically bistable media, Journal of Chemical Physics 132(2010)184516.
[1] Ya-feng He and Bao-quan Ai, Time-delayed-feedback control of pattern formation in symmetrical bistable media, Journal of Chemical Physics 133(2010)114507.
四. 主要项目与成果
个人荣誉, 2016年, 2016年广东省“珠江学者”特聘教授
个人荣誉, 2015年, 广东省科学技术奖自然科学类二等奖(第一完成人)
个人荣誉, 2012年, 2012年广东省"千百十"人才工程省级培养对象
个人荣誉, 2005年, 2005年荣获广东省优秀博士学位论文称号
科研项目, 2024年, 国家自然科学基金面上项目
科研项目, 2023年, 广东省自然科学基金面上项目
科研项目, 2021年, 广东省自然科学基金面上项目
科研项目, 2020年, 国家自然科学基金面上项目
科研项目, 2017年, 广东省自然科学基金项目面上项目
科研项目, 2017年, 广东省基础研究重大项目
科研项目, 2016年, 广东省高层次人才项目(珠江学者)
科研项目, 2015年, 国家自然科学基金面上项目
科研项目, 2015年, 广东省自然科学基金项目面上项目
科研项目, 2014年, 广东省高层次人才项目"低维热传导中负微分热阻特性的研究"
科研项目, 2011年, 广东省自然科学基金项目面上项目
科研项目, 2011年, 国家自然科学基金面上项目
科研项目, 2007年, 国家自然科学基金青年基金
科研项目, 2007年, 广东省自然科学基金面上项目