华南师范大学物理学院/正高 2020-12-19 00:01:00 来源:华南师范大学物理学院 点击: 收藏本文
Prof. Zhenyu Wang (PI)
Email: zhenyu.wang@m.scnu.edu.cn
Office: Science Building No. 4, South China Normal University, Higher Education Mega Center Campus, Guangzhou
Academic Appointments:
● 2024-now, Professor, School of Physics, South China Normal University
● 2020-2023, Professor, School of Physics and Telecommunication Engineering, South China Normal University
● 2013-2019, Postdoctoral Fellow, Institut für Theoretische Physik and IQST, Universität Ulm
● 2012-2012, Research Associate, The Chinese University of Hong Kong
Education:
● PhD, Department of Physics, The Chinese University of Hong Kong, 2012
● MPhil, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal Universiity, 2008
● BSc, School of Information and Optoelectronic Science and Engineering, South China Normal University, 2005
Research Interests:
Quantum control, spin dynamics, Nitrogen-Vacancy (NV) centers, magnetic resonance, quantum sensing, quantum information, and more.
Teaching:
● Quantum Mechanics (2020, 2021, 2022, 2023, 2024)
● Research Training (2022, 2023, 2024)
● Advanced Statistical Mechanics (2020, 2021, 2022, 2023, 2024)
Publications:
● Runkai Chen, Pengbo Zhu, Xiangbo Yang, Huada Lian, Yanglong Fan, and Zhen-Yu Wang, Eigenmode and eigenpropagation of the electromagnetic waves in Möbius and Klein networks, Optics Express 32, 38055 (2024).
● Chuan Chen, Jian-Yu Lu, Xu-Yang Chen, and Zhen-Yu Wang, Fast adiabatic preparation of multisqueezed states by jumping along the path, Phys. Rev. A 110, 012601 (2024). [arXiv:2405.15595]
● Ke Zeng, Xiaohui Yu, Martin B. Plenio, and Zhen-Yu Wang, Wide-Band Unambiguous Quantum Sensing via Geodesic Evolution, Phys. Rev. Lett. 132, 250801 (2024). [arXiv:2307.10537]
● Qi Lu, Berlind Vosberg, Zhenyu Wang, Priyadharshini Balasubramanian, Maabur Sow, Carla Volkert, Raul Gonzalez Brouwer, Ingo Lieberwirth, Robert Graf, Fedor Jelezko, Martin B. Plenio, Yingke Wu, and Tanja Weil,Unraveling Eumelanin Radical Formation by Nanodiamond Optical Relaxometry in a Living Cell,Journal of the American Chemical Society 146, 7222 (2024).
● Sichen Xu, Chanying Xie, and Zhen-Yu Wang, Enhancing electron-nuclear resonances by dynamical control switching, Phys. Rev. A 109, L020601 (2024). [Letter, arXiv:2311.10650]
● Z. Du, M. Gupta, F. Xu, K. Zhang, J. Zhang, Y. Zhou, Y. Liu, Z. Wang, J. Wrachtrup, N. Wong, C. Li, and Z. Chu, Widefield Diamond Quantum Sensing with Neuromorphic Vision Sensors, Advanced Science 11, 2304355 (2024) [Back Cover paper, arXiv:2306.14099]
● Pengbo Zhu, Runkai Chen, Xiangbo Yang, Yanglong Fan, Huada Lian, and Zhen-Yu Wang, Formation of photonic band gaps by direct destructive interference, Optics Express 31, 43390 (2023).
● M. Gong, M. Yu, R. Betzholz, Y. Chu, P. Yang, Z. Wang, and J. Cai, Accelerated quantum control in a three-level system by jumping along the geodesics, Physical Review A 107, L040602 (2023). [Letter, arXiv:2304.10672]
● Yiyao Liu, Zhen-Yu Wang, Shortcuts to Adiabaticity with Inherent Robustness and without Auxiliary Control, arXiv:2211.02543.
● Y. Wu, P. Balasubramanian, Z. Wang, J. A. S. Coelho, M. Prslja, R. Siebert, M. B. Plenio, F. Jelezko, and T. Weil, Detection of Few Hydrogen Peroxide Molecules Using Self-Reporting Fluorescent Nanodiamond Quantum Sensors, Journal of the American Chemical Society 144, 12642 (2022).
● B. Tratzmiller, J. F. Haase, Z. Wang, and M. B. Plenio, Parallel selective nuclear-spin addressing for fast high-fidelity quantum gates, Physical Review A 103, 012607 (2021).
● J. Barton, M. Gulka, J. Tarabek, Y. Mindarava, Z. Wang, J. Schimer, H. Raabova, J. Bednar, M. B. Plenio, F. Jelezko, M. Nesladek, and P. Cigler, Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds, ACS Nano 14, 12938 (2020).
● Z.-Y. Wang, J. Casanova, and M. B. Plenio, Enhancing the Robustness of Dynamical Decoupling Sequences with Correlated Random Phases, Symmetry 12, 730 (2020).
● Zhen-Yu Wang, Jacob E. Lang, Simon Schmitt, Johannes Lang, Jorge Casanova, Liam McGuinness, Tania S. Monteiro, Fedor Jelezko, Martin B. Plenio, Randomization of Pulse Phases for Unambiguous and Robust Quantum Sensing, Physical Review Letters 122, 200403 (2019). [arXiv:1903.01559]
● Kebiao Xu, Tianyu Xie, Fazhan Shi, Zhen-Yu Wang, Xiangkun Xu, Pengfei Wang, Ya Wang, Martin B. Plenio, Jiangfeng Du, Breaking the quantum adiabatic speed limit by jumping along geodesics, Science Advances 5, eaax3800 (2019). (arXiv:1711.02911).
● J. Casanova, Z.-Y. Wang, I. Schwartz, M. B. Plenio, Shaped Pulses for Energy-Efficient High-Field NMR at the Nanoscale, Phys. Rev. Applied 10, 044072 (2018). (arXiv:1805.01741).
● Michael A. Perlin, Zhen-Yu Wang, Jorge Casanova, Martin B. Plenio, Noise-resilient architecture of a hybrid electron-nuclear quantum register in diamond, Quantum Science and Technology 4, 015007 (2019). (arXiv:1708.09414).
● Ilai Schwartz, Jochen Scheuer, Benedikt Tratzmiller, Samuel Müller, Qiong Chen, Ish Dhand, Zhen-Yu Wang, Christoph Müller, Boris Naydenov, Fedor Jelezko and Martin B. Plenio, Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics, Science Advances 4, eaat8978 (2018).
● J. F. Haase, Z.-Y. Wang, J. Casanova, M. B. Plenio, Soft Quantum Control for Highly Selective Interactions among Joint Quantum Systems, Phys. Rev. Lett. 121, 050402 (2018). (arXiv:1708.09611).
● I. Arrazola, J. Casanova, J. S. Pedernales, Z.-Y. Wang, E. Solano, M. B. Plenio, Pulsed dynamical decoupling for fast and robust two-qubit gates on trapped ions. Physical Review A 97, 052312 (2018).
● J. Casanova, Z.-Y. Wang, and M. B. Plenio, Arbitrary nuclear-spin gates in diamond mediated by a nitrogen-vacancy-center electron spin. Physical Review A 96, 032314 (2017).
● Z.-Y. Wang, J. Casanova, and M. B. Plenio, Delayed entanglement echo for individual control of a large number of nuclear spins. Nature Communications 8, 14660 (2017).
● J. E. Lang, J. Casanova, Z.-Y. Wang, M. B. Plenio, T. S. Monteiro, Enhanced Resolution in Nanoscale NMR via Quantum Sensing with Pulses of Finite Duration. Physical Review Applied 7, 054009 (2017).
● J. Casanova, Z.-Y. Wang, and M. B. Plenio, Noise-resilient quantum computing with a nitrogen-vacancy center and nuclear spins. Physical Review Letters 117, 130502 (2016).
● Z.-Y. Wang and M. B. Plenio, Necessary and sufficient condition for quantum adiabatic evolution by unitary control fields. Physical Review A 93, 052107 (2016).
● J. F. Haase, Z.-Y. Wang, J. Casanova, and M. B. Plenio, Pulse-phase control for spectral disambiguation in quantum sensing protocols. Phys. Rev. A Phys. Rev. A 94, 032322 (2016).
● Z.-Y. Wang, J. F. Haase, J. Casanova, and M. B. Plenio, Positioning nuclear spins in interacting clusters for quantum technologies and bioimaging. Physical Review B 93, 174104 (2016).
● J. Casanova, Z.-Y. Wang, J.F. Haase, and M. B. Plenio, Robust dynamical decoupling sequences for individual-nuclear-spin addressing. Physical Review A 92, 042304 (2015).
● Z.-Y. Wang, J. M. Cai, A. Retzker, and M. B. Plenio, All-optical magnetic resonance of high spectral resolution using a nitrogen-vacancy spin in diamond. New Journal of Physics16, 083033 (2014).
● Z.-Y. Wang and R.-B. Liu, No-go theorems and optimization of dynamical decoupling against noise with soft cutoff. Physical Review A 87, 042319 (2013).
● N. Zhao, Z.-Y. Wang, and R.-B. Liu, Anomalous decoherence effect in a quantum bath. Physical Review Letters 106, 217205 (2011).
● Z.-Y. Wang and R.-B. Liu, Extending quantum control of time-independent systems to time-dependent systems. Physical Review A 83, 062313 (2011).
● W. Yang, Z.-Y. Wang, and R.-B. Liu, Preserving qubit coherence by dynamical decoupling. Frontiers of Physics 6, 2 (2011).
● Z.-Y. Wang and R.-B. Liu, Protection of quantum systems by nested dynamical decoupling. Physical Review A 83, 022306 (2011).
● Z. He, X. Yang, and Z.-Y. Wang, Vector method for studying the second-harmonic-generation light derived from complex periodic ferroelectric domains. Physics Letters A 374, 2483 (2010).
● Z.-Y. Wang and X. Yang, Strong attenuation within the photonic band gaps of multiconnected networks. Physical Review B 76, 235104 (2007).
Others:
● Chapter 14 "High-order dynamical decoupling" by Zhen-Yu Wang and Ren-Bao Liu, in 《Quantum Error Correction》, Cambridge University Press, Edited by D. A. Lidar and T. A. Brun
● 3 Patents granted (China: 2, US: 1)
基本情况
王振宇, 男, 理论物理研究所
教授, 博士,博士生/硕士生导师
自我介绍
2020年1月以青年拔尖人才加入华南师范大学。主要从事量子计算和量子传感的研究。通过研究动力学解耦和量子绝热操控等量子调控理论,建立了高保真、抗噪声、高容错的量子操控和量子态保护方案,发展了基于金刚石NV色心的微纳尺度核磁共振、材料中同类原子的独立量子探测与操控技术。部分理论成果获得国际同行实验验证,包括量子绝热演化的充分必要条件、跳跃式量子绝热控制、AXY脉冲技术、随机相位高可靠量子传感技术、NUDD优化动力学解耦序列、脉冲式自旋极化方案等理论成果。
获得教育部高等学校科学研究优秀成果奖二等奖(第四完成人)。一项在申请专利已被德国NVision Imaging Technologies公司购买。获邀为剑桥大学出版社的《Quantum Error Correction》撰写书章节一章。在《Physical Review Letters》、《Science Advances》、《Nature Communications》等权威SCI期刊发表论文三十多篇。
研究方向
研究领域主要为量子动力学和量子控制的基本理论问题,以及其在金刚石NV色心、自旋玻色系统、离子阱等量子系统在量子传感和量子计算等方面的应用。也从事波导网络系统等凝聚态物理方面的研究。
论文, 专著,专利 (参见上述Publications)
教育经历
2005年和2008年在华南师范大学分别获得学士和硕士学位。2012年于香港中文大学获得博士学位,毕业后任Research Associate。2013年赴德国乌尔姆大学做博士后研究。2020年1月加入华南师范大学。
教学
● 本科《量子力学》(2020, 2021, 2022, 2023),《量子力学A》(2023, 2024)
● 本科《科研训练》(2022, 2023, 2024)
● 研究生《高等统计物理》(2020, 2021, 2022, 2023, 2024)
招聘信息
招聘博士后,特聘(副)研究员多名